Answer:
Value of
for the given redox reaction is 
Explanation:
Redox reaction with states of species:

Reaction quotient for this redox reaction:
![Q_{p}=\frac{[Cr^{3+}]^{2}.P_{Cl_{2}}^{3}}{[H^{+}]^{14}.[Cr_{2}O_{7}^{2-}].[Cl^{-}]^{6}}](https://tex.z-dn.net/?f=Q_%7Bp%7D%3D%5Cfrac%7B%5BCr%5E%7B3%2B%7D%5D%5E%7B2%7D.P_%7BCl_%7B2%7D%7D%5E%7B3%7D%7D%7B%5BH%5E%7B%2B%7D%5D%5E%7B14%7D.%5BCr_%7B2%7DO_%7B7%7D%5E%7B2-%7D%5D.%5BCl%5E%7B-%7D%5D%5E%7B6%7D%7D)
Species inside third braket represent concentration in molarity, P represent pressure in atm and concentration of
is taken as 1 due to the fact that
is a pure liquid.
![pH=-log[H^{+}]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D)
So, ![[H^{+}]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D)
Plug in all the given values in the equation of
:

Answer:Butane > ethane > methane, because between bigger molecules there are stronger van der Waals forces and also higher molar mass means they need to be given more energy to have enough kinetic energy to move quickly, freely in gas.
There are multiple butene isomers (Butene) and some (2-Butenes - cis and trans) actually have higher boiling point than n-Butane (there is also Isobutane, of course, with quite much lower boiling point than all of them) and some (1-Butene, Isobutylene) have lower, so this isn't really a fair or simple question. But on simplest level, it can again be said that 1-butene has lower boiling point because it has very similar shape but slightly lower molar mass (2H less) than n-butane.
Explanation:
Separation will be achieved if one component adheres to the stationary phase more than the other component does.