The question is incomplete. The complete question is:
The half-life for the decay of carbon-14 is 5.73x10^3 years. Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of woodfrom an archeological dig is measured to be 2.8x10^3 Bq. The activity in a similiar-sized sample of fresh wood is measured to be 3.0x10^3 Bq. Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
570 years
Explanation:
The activity of the fresh sample is taken as the initial activity of the wood sample while the activity measured at a time t is the present activity of the wood artifact. The time taken for the wood to attain its current activity can be calculated from the formula shown in the image attached. The activity at a time t must always be less than the activity of a fresh wood sample. Detailed solution is found in the image attached.
Answer:
The physical states that are represented by each graph region are the liquid and the solid, the highest temperature is the liquid and as it freezes it becomes a solid. The particles change because when it's a liquid, it isn't that compact it's just spreading smootly but as it freezes the atoms start to stick together and become compact.
Explanation:
Hope that made sense!
<u>Answer:</u> The molality of solution is 0.740 m.
<u>Explanation:</u>
To calculate the mass of solvent (water), we use the equation:

Volume of water = 750 mL
Density of water = 1 g/mL
Putting values in above equation, we get:

To calculate the molality of solution, we use the equation:

Where,
= Given mass of solute
= 100.0 g
= Molar mass of solute
= 180 g/mol
= Mass of solvent (water) = 750 g
Putting values in above equation, we get:

Hence, the molality of solution is 0.740 m.
The soup water would turn into soap.
The sun I hope this helps