Maximum number of covalent bonds that an oxygen atom can make with hydrogen is 2.
- the ground state electronic configuration of oxygen is 2s² 2p⁴ that means it has 6 electrons in its valence shell and require two electrons are required to complete its octate.
- Two bonds are created when an electron donor atom shares the two needed electrons with oxygen. The ability of two oxygen atoms to share valence electrons results in the creation of a double bond between the two atoms.
- There are no longer any empty orbitals in the octet of oxygen after it is complete. As a result, it is unable to accept more electrons or create more bonds.
Therefore, Oxygen can only generate two bonds because it needs two additional electrons to complete its octet, after which it will run out of empty orbitals in which to receive additional electrons and create additional bonds.
learn more about octate here:
https://brainly.in/question/24161245
#SPJ4
Answer:
Mass = 0.158 g
Explanation:
Formula used,
P V = n R T
Or,
n = P V / R T
Putting values,
n = 0.948 atm . 0.025 L / 0.0821 L.atm.K⁻¹.mol⁻¹ . 291.45
n = 0.00099 mol
Note: we have changed pressure from mmHg to atm, volume from mL to L and temperature from C to K)
Also,
Mass = n . Molecular Mass
Mass = 0.00099 mol × 159.808 g/mol
Mass = 0.158 g
Answer:
4057.85 g/mol
Explanation:
Hello, the numerical procedure is shown in the attached file.
- In this case, since we don't have the density of the protein, we must assume that the volume of the solution is solely given by the benzene's volume, in order to obtain the moles of the solute (protein).
-Van't Hoff factor is assumed to be one.
Best regards.