Answer:
<h3>The answer is 200 cm³</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 150 g
density = 0.75 g/cm³
We have

We have the final answer as
<h3>200 cm³</h3>
Hope this helps you
<em>A glass flask of volume 400 cm³ is just filled with mercury at 0°C. How much mercury will overflow when the temperature of the system rises to 80°C.</em>
<em />
The volume of mercury that overflow is 5.376 cm³
<h3>Further explanation</h3>
Given
volume of glass = 400 cm³
Δt=80 °C - 0 °C = 80
Required
overflow volume
Solution
With an increase in the temperature of the substance, objects can expand. This expansion includes volume expansion.
Can be formulated

Find volume expansion of glass and mercury


Overflow :
ΔV mercury - ΔV glass : 5.76-0.384 = 5.376 cm³
The answer would be C. in an ellipse
Hope this answer helps!

25%
Explanation:
In a half life of a radioactive isotope is 1 day,it means it loses its half mass each day
We a formula for N half life

where n is the number of days
Here the isotope is kept for 2 days
so it's left over mass will be

It's left over mass 1/4th of the original mass
Now, we need to find it's percentage by multiplying with 100

<u>So</u><u> </u><u>2</u><u>5</u><u>%</u><u> </u><u>mass</u><u> </u><u>will</u><u> </u><u>be</u><u> </u><u>left</u><u> </u><u>after</u><u> </u><u>2</u><u> </u><u>day</u><u> </u><u>of</u><u> </u><u>half</u><u> </u><u>life</u><u> </u><u>radioactive</u><u> </u><u>isotope</u><u>.</u><u> </u>