Answer:
heat is the movement from areas of <u>high </u>temperature to areas of <u>low </u>temperature
physical change because even though gas formation was observed, the water was undergoing a state change, which means that its original properties are preserved
Explanation:
The boiling of water is a physical change because the original properties of the water is preserved.
- A physical change is the one that alters the physical properties of matter.
- This kind of change is easily reversible as the water can be cooled back.
- No new kinds of matter is produced in this kind of change .
- The molecules of the matter still retains their property after.
During the boiling of water, intermolecular bonds called hydrogen bonds between the water molecules are broken. This makes the individual molecules free.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
<h3>
Answer:</h3>
5.6 L
<h3>
Explanation:</h3>
We are given;
- Initial volume, V1 = 3.5 L
- Initial pressure, P1 = 0.8 atm
- Final pressure, P2 = 0.5 atm
We are required to calculate the final volume;
- According to Boyle's law, the volume of a fixed mass of a gas and the pressure are inversely proportional at a constant temperature.
- That is; P α 1/V
- Mathematically, P=k/V
- At two different pressure and volume;
P1V1 = P2V2
In this case;
Rearranging the formula;
V2 = P1V1 ÷ P2
= (0.8 atm × 3.5 L) ÷ 0.5 atm
= 5.6 L
Therefore, the resulting volume is 5.6 L
Ngl didn’t read it so I’m not gonna answer it. Don’t report please just want to ask a question but have to answer two
The idea behind balancing chemical equations is that the number of atoms an element has on the reactants' side must be equal to the number of atoms it has on the products' side.
These atoms will become a part of different compounds once the reaction is completed, but they must always be in equal numbers on both sides.
So, look at iron first. One atom reacts, but two are produced - notice the 2 subscript iron has in Fe2O3. This means you must double the number of atoms on the reactants' side to reach an equality.
2Fe(s)+O2(g)→Fe2O3(s)
Now look at oxygen. Two atoms react, but three are produced. The trick here is to find a common multiple that will make the number of atoms equal on both sides.
The easiest way to do this is to multiply the atoms that react by 3, which will give you 6 oxygen atoms that react, and the atoms that are produced by 2 - this will get you 6 oxygen atoms produced.
2Fe(s)+3O2(g)→2Fe2O3(s)
However, notice that the iron atoms are unbalanced again. You have 2 that react, but 4 that are produced → multiply the atoms that react by 2 again, which will give you
4Fe(s)+3O2(g)→2Fe2O3(s)