Answer:
Explanation:
In an aqueous solution of potassium sulfate (K₂SO₄), the solute is K₂SO₄ and the solvent is water. The percentage by mass describes the grams of solute there are dissolved per 100 grams of solution. It can be calculated as:
mass percentage = (mass of solute/total mass of solution) x 100%
For example, in an aqueous solution which is 2% by mass of K₂SO₄, there are 2 grams of K₂SO₄ per 100 g of solution.
Answer:
B.Convection
the movement caused within a fluid by the tendency of hotter and therefore less dense material to rise, and colder, denser material to sink under the influence of gravity, which consequently results in transfer of heat.
Answer:
B₂
Explanation:
The limiting reactant is always a reactant. You can determine which reactant is limiting by identifying which has the smaller mole-to-mole ratio with the product. This ratio can be found via the coefficients of the balanced reaction.
4 A₂ + 3 B₂ ---> 6 AB
4 moles A₂
------------------ = mole-to-mole ratio A₂/AB
6 moles AB
3 moles B₂
------------------ = mole-to-mole ratio B₂/AB
6 moles AB
Since the mole-to-mole ratio between B₂ and AB is smaller, B₂ must be the limiting reactant.
Answer:
Newton’s law of inertia is illustrated in tests with crash dummies, seat belts, and airbags, wherein the object stays in motion unless there is an unbalanced force applied to it.
Inertia is the main reason why there are seatbelts and airbags in the car. In this case, when the seatbelt is trapped to the passenger, the passenger experiences the same state of motion as the car. If the car accelerates/decelerates, the passenger experiences it too. When the car experiences collision, an unbalance force is acted upon it. This causes the car to stop abruptly, and the passenger shares the same state of motion because of the seatbelt and the airbags that apply the unbalanced force to stop the passenger to go forward.