Answer:
Step-by-step explanation:
The factors of a polynomial function are the zeros of the function
It is true that x - 3 is a factor of m(x) = x^3 - x^2 - 5x - 3
<h3>How to show why the x - 3 is a factor</h3>
The function is given as:
m(x) = x^3 - x^2 - 5x - 3
The factor is given as:
x - 3
Set the factor to 0
x - 3 = 0
Solve for x
x = 3
Substitute 3 for x in the function
m(3) = 3^3 - 3^2 - 5(3) - 3
Evaluate
m(3) =0
Since the value of m(3) is 0, then x - 3 is a factor of m(x) = x^3 - x^2 - 5x - 3
Read more about factors at:
brainly.com/question/11579257
The correct option is (B) yes because all the elements of set R are in set A.
<h3>
What is an element?</h3>
- In mathematics, an element (or member) of a set is any of the distinct things that belong to that set.
Given sets:
- U = {x | x is a real number}
- A = {x | x is an odd integer}
- R = {x | x = 3, 7, 11, 27}
So,
- A = 1, 3, 5, 7, 9, 11... are the elements of set A.
- R ⊂ A can be understood as R being a subset of A, i.e. all of R's elements can be found in A.
- Because all of the elements of R are odd integers and can be found in A, R ⊂ A is TRUE.
Therefore, the correct option is (B) yes because all the elements of set R are in set A.
Know more about sets here:
brainly.com/question/2166579
#SPJ4
The complete question is given below:
Consider the sets below. U = {x | x is a real number} A = {x | x is an odd integer} R = {x | x = 3, 7, 11, 27} Is R ⊂ A?
(A) yes, because all the elements of set A are in set R
(B) yes, because all the elements of set R are in set A
(C) no because each element in set A is not represented in set R
(D) no, because each element in set R is not represented in set A