The atomic mass or relative isotopic mass refers to the mass of a single particle, and therefore is tied to a certain specific isotope of an element. The dimensionless standard atomic weight instead refers to the AVERAGE of atomic mass values of a typical naturally-occurring mixture of isotopes for a sample of an element.
You can count it by yourself using formula
m = ({first isotopic distribution%}× {first atomic.mass})+ ({second isotopic distribution%}× {second atomic.mass}) / {100}
I think is 1 and a half km
Answer:
295.7 mL of 24% trichloroacetic acid (tca) is needed .
Explanation:
Let the volume of 24% trichloroacetic acid solution be x
Volume of required 10% trichloroacetic acid solution =8 bottles of 3 ounces
= 24 ounces = 709.68 mL
(1 ounces = 29.57 mL)
Amount of trichloroacetic acid in 24% solution of x volume of solution will be equal to amount of trichloroacetic acid in 10% solution of volume 709.68 mL.

x = 295.7 mL
295.7 mL of 24% trichloroacetic acid (tca) is needed .
The largest risks while designing a model to withstand a village include that the model does not mitigate the effects of the tsunami or only mitigates the effects partially, which would cause damages to the homes.
Designing a model to withstand the effect of any natural phenomenon such as an earthquake, fire or tsunami is not an easy task and will require the following cycle:
- Designing the model.
- Testing the model.
- Making changes or designing a new model.
In the case of a model for tsunamis, it is likely the following problems occur:
- The model does not protect the houses from tsunamis.
- The model does not protect the houses completely.
This would lead to negative effects such as:
- Damages in the houses.
- Dead or injured people.
- Destruction of infrastrcture.
Note: This question is incomplete because the context is missing; here is the missing part.
Protecting Your Model Village from Tsunamis this task, you will design a model village to withstand the effects of a tsunami.
Learn more about tsunami in: brainly.com/question/1126317
The answer is the third choice because is oxidation half reactions, only the oxidation state of the reducing agent changes; in this third choice, Fe2+ is oxidized and becomes Fe3+. Just keep in mind that half reactions usually include the change in electrons:
Fe2+ -> Fe3+ +e-<span />