Answer:
will occur because K is more active than Mg
Answer:
specific heat.
Explanation:
Definition:
The amount of heat required to raise the temperature of one gram of substance by one degree is called specific heat.
Formula:
Q = m. c. ΔT
Q = amount of heat required
m = mass of substance
c = specific heat of substance
ΔT = change in temperature
The substance with greater value of specific heat require more heat to raise the temperature while the substance with lower value will raise its temperature very quickly by absorbing smaller heat.
For example the beach sand gets hot very quickly because of lower specific heat of sand while water is colder than sand because of higher specific heat capacity.
Answer:
The molar solubility of lead bromide at 298K is 0.010 mol/L.
Explanation:
In order to solve this problem, we need to use the Nernst Equaiton:
![E = E^{o} - \frac{0.0591}{n} log\frac{[ox]}{[red]}](https://tex.z-dn.net/?f=E%20%3D%20E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D)
E is the cell potential at a certain instant, E⁰ is the cell potential, n is the number of electrons involved in the redox reaction, [ox] is the concentration of the oxidated specie and [red] is the concentration of the reduced specie.
At equilibrium, E = 0, therefore:
![E^{o} = \frac{0.0591}{n} log \frac{[ox]}{[red]} \\\\log \frac{[ox]}{[red]} = \frac{nE^{o} }{0.0591} \\\\log[red] = log[ox] - \frac{nE^{o} }{0.0591}\\\\[red] = 10^{ log[ox] - \frac{nE^{o} }{0.0591}} \\\\[red] = 10^{ log0.733 - \frac{2x5.45x10^{-2} }{0.0591}}\\\\](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20%20%3D%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%5C%5C%5C%5Clog%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%3D%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%20%5C%5C%5C%5Clog%5Bred%5D%20%3D%20%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%7D%20%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log0.733%20-%20%20%5Cfrac%7B2x5.45x10%5E%7B-2%7D%20%20%7D%7B0.0591%7D%7D%5C%5C%5C%5C)
[red] = 0.010 M
The reduction will happen in the anode, therefore, the concentration of the reduced specie is equivalent to the molar solubility of lead bromide.