It is potential energy because the band is not in movement, th band has the potential to move.
We can solve the problem by using the first law of thermodynamics:
where
is the variation of internal energy of the system
Q is the heat added to the system
W is the work done by the system
In this problem, the variation of internal energy of the system is
While the heat added to the system is
therefore, the work done by the system is
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,
Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
Answer:2.47
Explanation:
So, the beaker weighs 1.40N when filled with water, brine of density weighs about 1.7N, you add the density + water. Have a good day!
2 pounds = 9 burgers figure out ow many 9's you can get out of 100: 100/9=11 but that only makes 99 you need 100 so we would add another one making 12. now multiply 12 by 2: 12·2=24. You would need 24 pounds of meet :)