Answer:
a)
And we can conclude that we are 95% confident that the true mean of Co2 level is between 608.29 and 700.03 ppm
b)
Step-by-step explanation:
Part a
The confidence interval for the mean is given by the following formula:
(1)
In order to calculate the critical value
we need to find first the degrees of freedom, given by:
Since the Confidence is 0.95 or 95%, the value of
and
, and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.025,51)".And we see that
Replacing we got:
And we can conclude that we are 95% confident that the true mean of Co2 level is between 608.29 and 700.03 ppm
Part b
The margin of error is given by :
(a)
The desired margin of error is ME =50/2=25 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
The critical value for 95% of confidence interval now can be founded using the normal distribution. And in excel we can use this formla to find it:"=-NORM.INV(0.025;0;1)", and we got
, and we use an estimator of the population variance the value of 175 replacing into formula (b) we got:
Answer:
d
Step-by-step explanation:
Answer:
On occasions you will come across two or more unknown quantities, and two or more equations
relating them. These are called simultaneous equations and when asked to solve them you
must find values of the unknowns which satisfy all the given equations at the same time.
Step-by-step explanation:
1. The solution of a pair of simultaneous equations
The solution of the pair of simultaneous equations
3x + 2y = 36, and 5x + 4y = 64
is x = 8 and y = 6. This is easily verified by substituting these values into the left-hand sides
to obtain the values on the right. So x = 8, y = 6 satisfy the simultaneous equations.
2. Solving a pair of simultaneous equations
There are many ways of solving simultaneous equations. Perhaps the simplest way is elimination. This is a process which involves removing or eliminating one of the unknowns to leave a
single equation which involves the other unknown. The method is best illustrated by example.
Example
Solve the simultaneous equations 3x + 2y = 36 (1)
5x + 4y = 64 (2) .
Solution
Notice that if we multiply both sides of the first equation by 2 we obtain an equivalent equation
6x + 4y = 72 (3)
Now, if equation (2) is subtracted from equation (3) the terms involving y will be eliminated:
6x + 4y = 72 − (3)
5x + 4y = 64 (2)
x + 0y = 8