I'm guessing that you mean like this:
-- The ruler is held with zero at the bottom, and the centimeter markings
increase as you go up the ruler.
-- You place your fingers with the ruler and the zero mark between them.
-- The number where you catch the ruler is the distance it has fallen.
Then, all we have to find is the time it takes for the ruler to fall 11.3 cm .
Here's the formula for the distance an object falls from rest
in a certain time:
Distance = (1/2) (gravity) (time)²
On Earth, the acceleration of gravity is 9.8 m/s².
So we can write ...
11.2 cm = (1/2) (9.8 m/s²) (time)²
or
0.112 meter = (4.9 m/s²) (time)²
Divide each side
by 4.9 m/s² : (0.112 m) / (4.9 m/s²) = time²
(0.112 / 4.9) sec² = time²
Square root
each side: time = √(0.112/4.9 sec²)
= √ 0.5488 sec²
= 0.74 second (rounded)
efficiency = (useful energy transferred ÷ energy supplied) × 100
It's easy to use this formula, but we have to know both the useful energy and the energy supplied. The drawing doesn't tell us the useful energy, so we have to find a clever way to figure it out. I see two ways to do it:
<u>Way #1:</u>
We all know about the law of conservation of energy. So we know that the total energy coming out must be 250J, because that's how much energy is going in. The wasted energy is 75J, so the rest of the 250J must be the useful energy . . . (250J - 75J) = 175J useful energy.
(useful energy) / (energy supplied) = (175J) / (250J) = <em>70% efficiency</em>
================================
<u>Way #2: </u>
How much of the energy is wasted ? . . . 75J wasted
What percentage of the Input is that 75J ? . . . 75/250 = 30% wasted
30% of the input energy is wasted. That leaves the other <em>70%</em> to be useful energy.
Answer:
Exposure time limitation, shielding and distance.
Explanation:
- Limitation of exposure time, since the dose received is directly proportional to the exposure time, so that, at a shorter time, lower dose. For this reason, planning is suggested, to reduce time.
-
Use of shields. This allows a reduction in the dose received by the technician when filtered by the barrier (screen). There are two types of shields or screens, the primary barriers (attenuate the radiation of the primary beam) and the secondary barriers (avoid diffuse radiation).
-
Distance to the radioactive source. The dose received is inversely proportional to the square of the distance to the radioactive source. Therefore, if the distance is doubled, the dose received will decrease by a quarter. Reason for this, it is advisable to use devices or remote controls whenever possible.
Average speed is defined by the following formula

here
D = total distance that an object move from its initial position to final position
t = total time of the motion
so here we will say that there is no such relation between initial or final speed or we can say maximum or minimum speed of object with average speed of object.
We only need to find the total distance and total time of motion in order to find the average speed
here we can see many examples like let say an object moves with speed v1 for time t1 and then with speed v2 for time t2 then here average speed is given as

since we know that distance covered is product of speed and time
that's why we used above equation for finding total distance
now the average speed will be

so this is how we can find the average speed for above motion
so average speed is always between maximum and minimum speed any value in-between.
It is neither the maximum value nor it is minimum value