Answer:
Da=(1/4)Db
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
When s = Da, t = t

When s = Db, t = 2t

Dividing the two equations

Hence, Da=(1/4)Db
Answer:
37.725 A
Explanation:
B = magnitude of the magnetic field produced by the electric wire = 0.503 x 10⁻⁴ T
r = distance from the wire where the magnetic field is noted = 15 cm = 0.15 m
i = magnitude of current flowing through the wire = ?
Magnetic field by a long wire is given as

Inserting the values

i = 37.725 A
We will apply the concept of period in a pendulum, defined as the product between 2
by the square root of the length over gravity, this is mathematically

Here,
T = Period
L = Length
g = Acceleration due to gravity
For the period to be 1 second, then we must look for the necessary length for such a requirement so




The meter's length would be slight less than one-fourth of its current length. Also, the number of significant digits depends only on how precisely we know g, because the time has been defined to be exactly 1s.
Therefore the correct answer is C.
Answer:
A. To find the mass flow rate.
We use= 220 x 0.355/ 60
= 1.3kg/s
B. Volume flowrate is = mass flowrate / density
But density is 1000kg/m³
= 1.3kg/s/ 1000kg/m³
= 0.0013m³/s
C. Flow speead at 1
= 0.0013m³/s / (2 x 10-2m)²
= 6.5m/s
D.flow speed at 2
0.0013m³/s / (8x 10-2m)²
=1.63m/s
E. Gauge pressure at point 1
= 152+ 1/1000 ( 1.63)²- 6.5² + 1000( 9.8) ( 0-1.35)
= 119kpa
The answer is B-plus.
The object is accelerating to the right, and up.