1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
3 years ago
13

Why do electric field lines explain why like charges repel and opposite charges attract?

Physics
1 answer:
vivado [14]3 years ago
5 0

It can be explained as follows: consider the field produced by a positive charge. If we place a positive test charge in this a field, then this charge would move away from the central charge (because like charges repel), while if we place a negative test charge in this field, this charge would move towards the central charge (because opposite charges repel)

Explanation:

Electric fields are vector fields, and they are represented using field lines.

The field lines give indications on both the magnitude and the direction of the electric field. In fact:

  • The magnitude of the field can be inferred from the spacing between the lines: the closer the lines are, the stronger the field, while for a weaker field the lines are more spread apart
  • The direction of the field is given by the direction of the field lines

In particular, by convention the direction of the field lines represent the direction of the force that a positive test charge would feel when immersed in that field: this means that a positive test charge would accelerate in the direction of the field lines, while a negative test charge would accelerate in the direction opposite to the field lines.

This is in agreement with the fact that like charges repel and opposite charges attract. In fact, the lines of the electric field produced by a single-point positive charge point away from the positive charge: if we place a positive test charge in this field, then this charge would move away from the central charge (because like charges repel), while if we place a negative test charge in this field, this charge would move towards the central charge (because opposite charges repel).

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
A 2.0 g identification reflector glued to one end of a helicopter rotor is spinning at a tangential velocity of 2093 m/s. The re
katrin2010 [14]
372863 juusnjus bhhhanbubhgajhus
7 0
3 years ago
Which of the following is an example of a chemical change?
tankabanditka [31]

b. burning paper

hope it helps

3 0
3 years ago
Find the moments of inertia Ix, Iy, I0 for a lamina that occupies the part of the disk x2 y2 ≤ 36 in the first quadrant if the d
Tasya [4]

Answer:

I(x)  = 1444×k ×{\pi}

I(y)  = 1444×k ×{\pi}

I(o) = 3888×k ×{\pi}  

Explanation:

Given data

function =  x^2 + y^2 ≤ 36

function =  x^2 + y^2 ≤ 6^2

to find out

the moments of inertia Ix, Iy, Io

solution

first we consider the polar coordinate (a,θ)

and polar is directly proportional to a²

so p = k × a²

so that

x = a cosθ

y = a sinθ

dA = adθda

so

I(x) = ∫y²pdA

take limit 0 to 6 for a and o to \pi /2 for θ

I(x) = \int_{0}^{6}\int_{0}^{\pi/2} y²p dA

I(x) = \int_{0}^{6}\int_{0}^{\pi/2} (a sinθ)²(k × a²) adθda

I(x) = k  \int_{0}^{6}a^(5)  da ×  \int_{0}^{\pi/2}  (sin²θ)dθ

I(x) = k  \int_{0}^{6}a^(5)  da ×  \int_{0}^{\pi/2}  (1-cos2θ)/2 dθ

I(x)  = k ({r}^{6}/6)^(5)_0 ×  {θ/2 - sin2θ/4}^{\pi /2}_0

I(x)  = k × ({6}^{6}/6) × (  {\pi /4} - sin\pi /4)

I(x)  = k ×  ({6}^{5}) ×   {\pi /4}

I(x)  = 1444×k ×{\pi}    .....................1

and we can say I(x) = I(y)   by the symmetry rule

and here I(o) will be  I(x) + I(y) i.e

I(o) = 2 × 1444×k ×{\pi}

I(o) = 3888×k ×{\pi}   ......................2

3 0
3 years ago
What is the approximate mass of air in a living room 4.5m×3.4m×2.9m? the density of air is 1.29 kg/m3?
topjm [15]
First we have to calculate the volume of the living room:
V = L x W x H = 4.5 m * 3.4 m * 2.9 m
V = 44.37 m³
We know that Density = 1.29 kg/m²
D = m / V
m = D · V
m = 1.29 kg/m³ · 44.37 m³
m = 57.2373 kg ≈ 57.2 kg
Answer: The approximate mass of air in living room is 57.2 kg.
6 0
3 years ago
Vector a has a magnitude of 12.3 units and points due west. vector b points due north. what is the magnitude of b if a - b has a
algol [13]

The magnitude of vector b is 8.58 Unit.

Since both the vectors a and b are perpendicular to each other, so we can apply the Pythagoras theorem to calculate the magnitude of the vector b.

Applying the Pythagoras theorem

(a-b)^2=a^2+b^2

15^2=12.3^2-b^2

b=8.58 unit

Therefor the magnitude of the vector b is 8.58 unit.

8 0
3 years ago
Other questions:
  • A gull is flying horizontally 10.80 m above the ground at 6.00 m/s. The bird is carrying a clam in its beak and plans to crack t
    5·1 answer
  • You and a friend are playing tug-of-war with a massless rope. You are pulling with 50 Newtons of force while your friend is pull
    5·1 answer
  • Unless indicated otherwise, assume the speed of sound in air to be v = 344 m/s. A pipe closed at both ends can have standing wav
    11·1 answer
  • 4. A train is travelling at a speed of 60 km/ h. Brakes are applied so as to produce a uniform
    8·1 answer
  • Which action can be explained by physics?
    6·1 answer
  • in a football game, the kicker kicks a football a horizontal distance of 43 yards if the ball lands 3.9 seconds later, what is t
    14·1 answer
  • 2. Stars normally convert hydrogen into helium through nuclear fusion. That requires incredibly hot temperatures and high pressu
    5·1 answer
  • The base ( foundation ) of building is made wider. Why ?​
    10·1 answer
  • Where on a roller coaster is centripetal forces at work.
    9·1 answer
  • The cheetah is considered the fastest running animal in the world. Cheetahs can accelerate to a speed of 21.5 m/s in 2.50 s and
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!