1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
3 years ago
13

Why do electric field lines explain why like charges repel and opposite charges attract?

Physics
1 answer:
vivado [14]3 years ago
5 0

It can be explained as follows: consider the field produced by a positive charge. If we place a positive test charge in this a field, then this charge would move away from the central charge (because like charges repel), while if we place a negative test charge in this field, this charge would move towards the central charge (because opposite charges repel)

Explanation:

Electric fields are vector fields, and they are represented using field lines.

The field lines give indications on both the magnitude and the direction of the electric field. In fact:

  • The magnitude of the field can be inferred from the spacing between the lines: the closer the lines are, the stronger the field, while for a weaker field the lines are more spread apart
  • The direction of the field is given by the direction of the field lines

In particular, by convention the direction of the field lines represent the direction of the force that a positive test charge would feel when immersed in that field: this means that a positive test charge would accelerate in the direction of the field lines, while a negative test charge would accelerate in the direction opposite to the field lines.

This is in agreement with the fact that like charges repel and opposite charges attract. In fact, the lines of the electric field produced by a single-point positive charge point away from the positive charge: if we place a positive test charge in this field, then this charge would move away from the central charge (because like charges repel), while if we place a negative test charge in this field, this charge would move towards the central charge (because opposite charges repel).

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
6. Two light bulbs are designed for use at 120 V and are rated at 75 W and 150 W. Which light bulb has the greater filament resi
Nonamiya [84]

\\ \bull\tt\longrightarrow P=\dfrac{V^2}{R}

  • P is power
  • R is resistance

\\ \bull\tt\longrightarrow R=\dfrac{V^2}{P}

Hence

\\ \bull\tt\longrightarrow R\propto V

\\ \bull\tt\longrightarrow R\propto \dfrac{1}{P}

  • Therefore if power is low then resistance will be high.

The first bulb has less power hence it has greater filament resistance.

5 0
3 years ago
If a 93000 kg truck collides with a 60 kg car
algol [13]
What’s the question here?
8 0
3 years ago
2. A 55 kg woman has a momentum of 200 kg m/s. What is her velocity?
NeTakaya

Answer:

\boxed {\tt 3.63636364 \ m/s}

Explanation:

Velocity can be found using the following formula:

v=\frac{p}{m}

where p is the momentum and m is the mass.

The woman has a mass of 55 kilograms and a momentum of 200 kilogram meters per second.

p= 200 \ kgm/s\\m=55 \ kg

Substitute the values into the formula.

v=\frac{200 \ kg m/s}{55 \ kg}

Divide. Note that the kilograms, or kg, will cancel each other out.

v=\frac{200 \ m/s}{55}

v= 3.63636364 \ m/s

The woman's velocity is 3.63636364 meters per second.

6 0
3 years ago
From a set of graphed data the slope of the best fit line is found to be 1.35 m/s and the slope of the worst fit line is 1.29m/s
Svetradugi [14.3K]

Solution:

Let the slope of the best fit line be represented by 'm_{best}'

and the slope of the worst fit line be represented by 'm_{worst}'

Given that:

m_{best} = 1.35 m/s

m_{worst} = 1.29 m/s

Then the uncertainity in the slope of the line is given by the formula:

\Delta m = \frac{m_{best}-m_{worst}}{2}               (1)

Substituting values in eqn (1), we get

\Delta m = \frac{1.35 - 1.29}{2} = 0.03 m/s

8 0
3 years ago
A car with a mass of 833 kg rounds an unbanked curve in the road at a speed of 28.0 m/s. If the
SSSSS [86.1K]
I had the same question

6 0
3 years ago
Other questions:
  • What is the shape of the orbit of satellites
    8·2 answers
  • describe the motion of a pendulum in terms of kinetic and potential energy when it goes from its highest point to lowest point,
    14·1 answer
  • Find the ratio of average speed of a scooter moving at 30m/min and a car moving at 27km/hr
    6·1 answer
  • A woman exerts a horizontal force of 4 pounds on a box as she pushes it up a ramp that is 10 feet long and inclined at an angle
    7·1 answer
  • A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound
    7·1 answer
  • The length ofa train is 44.5 m. Its front is 100. m from a pole. It accelerates from rest at 0.500 m/s^2. (a) How long does it t
    12·1 answer
  • Can someone help me with this
    9·1 answer
  • PLEASE HELP ME!!!!!!!!!
    13·1 answer
  • According to the graph, during which time interval are the particles in the air slowing down?
    15·2 answers
  • Describe what the sun would look like from earth if the entire photosphere were the same temperature as a sunspot?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!