1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
2 years ago
6

A sample from a meteorite that landed on Earth has been analyzed, and the result shows that out of every 1,000 nuclei of potassi

um-40 originally in the meteorite, only 250 are still present, meaning they have not yet decayed. How old is the meteorite (in yr)?
Physics
1 answer:
Lera25 [3.4K]2 years ago
5 0
I just did 1,000 nuclei divided by 250 and got 4.
The answer is 4 years.
Hope this helps!
Please give Brainliest!
You might be interested in
In the sport of parasailing, a person is attached to a rope being pulled by a boat while hanging from a parachute-like sail. A r
IrinaK [193]

Answer:

570 N

Explanation:

Draw a free body diagram on the rider.  There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.

The rider is moving at constant speed, so acceleration is 0.

Sum of the forces in the x direction:

∑F = ma

F cos 30° - T cos 15° = 0

F = T cos 15° / cos 30°

Sum of the forces in the y direction:

∑F = ma

F sin 30° - W - T sin 15° = 0

W = F sin 30° - T sin 15°

Substituting:

W = (T cos 15° / cos 30°) sin 30° - T sin 15°

W = T cos 15° tan 30° - T sin 15°

W = T (cos 15° tan 30° - sin 15°)

Given T = 1900 N:

W = 1900 (cos 15° tan 30° - sin 15°)

W = 570 N

The rider weighs 570 N (which is about the same as 130 lb).

6 0
3 years ago
An Olympic swimmer swims 50.0 meters in 23.1 seconds . What is his average speed
Aneli [31]
If you take 50 meters and divide by 23.1 seconds, you will get 2.16 meters per second.

So his average speed is 2.16 m/s.
3 0
3 years ago
An archer draws her bow and stores 34.8 J of elastic potential energy in the bow. She releases the 63 g arrow, giving it an init
elena-14-01-66 [18.8K]

Answer:

Approximately 71\%.

Explanation:

The formula for the kinetic energy \rm KE of an object is:

\displaystyle \mathrm{KE} = \frac{1}{2}\, m \cdot v^2,

where

  • m is the mass of that object, and
  • v is the speed of that object.

Important: Joule (\rm J) is the standard unit for energy. The formula for \rm KE requires two inputs: mass and speed. The standard unit of mass is \rm kg while the standard unit for speed is \rm m \cdot s^{-1}. If both inputs are in standard units, then the output (kinetic energy) will also be in the standard unit (that is: joules,

Convert the unit of the arrow's mass to standard unit:

m = 63\; \rm g = 0.063\; \rm kg.

Initial \rm KE of this arrow:

\begin{aligned}\mathrm{KE} &= \frac{1}{2} \, m \cdot v^2 \\ &= \frac{1}{2}\times 0.063\; \rm kg \times \left(\rm 28 \; m \cdot s^{-1}\right)^2 \\ &\approx 24.696\; \rm J\end{aligned}.

That's the same as the energy output of this bow. Hence, the efficiency of energy transfer will be:

\displaystyle \frac{24.696\; \rm J}{34.8\; \rm J} \times 100\% \approx 71\%.

8 0
3 years ago
Which school of thought did sigmund freud’s the interpretation of dreams support?
Wewaii [24]
The school that was supported was the Self psychology or the Ego psychology which is based on the model of the mind called id-ego-superego model
4 0
3 years ago
A projectile is launched from ground level at an angle of 30 degrees above the horizontal. Neglect air resistance and consider t
Oduvanchick [21]

Answer:

just before landing the ground

Explanation:

Let the velocity of projection is u and the angle of projection is 30°.

Let T is the time of flight and R is the horizontal distance traveled. As there is no force acting in horizontal direction, so the horizontal velocity remains constant. Let the particle hits the ground with velocity v.

initial horizontal component of velocity, ux = u Cos 30

initial vertical component of velocity, uy = u Sin 30

Time of flight is given by

T = \frac{2u Sin\theta }{g}

Final horizontal component of velocity, vx = ux = u Cos 30

Let vy is teh final vertical component of velocity.

Use first equation of motion

vy = uy - gT

v_{y}=u_{y}- g \times \frac{2u Sin\theta }{g}

v_{y}=u Sin 30 - 2u Sin 30

vy = - u Sin 30

The magnitude of final velocity is given by

v = \sqrt{v_{x}^{2}+v_{y}^{2}}

v = \sqrt{\left (uCos 30  \right )^{2}+\left (uSin 30  \right )^{2}}

v = u

Thus, the velocity is same as it just reaches the ground.

6 0
3 years ago
Other questions:
  • 1. The path of motion of a thrown javelin is an example of (blank) motion.
    9·2 answers
  • In interpersonal attraction, the phrase “Birds of a feather flock together” is more accurate than “Opposites attract.”
    10·2 answers
  • the mass of one water drop is 0.0008kg and the gravitational field strength is 10N/kg what is its weight
    7·1 answer
  • Discuss the difference between renewable and non- renewable fuels with reference to nuclear fuel and biofuel​
    13·1 answer
  • a car travel uniformly speed of 30 km/h for 30 minutes and then at uniform speed of 60km/h for next 30min calculate the average
    13·1 answer
  • Can someone please help me with science.
    11·1 answer
  • Help !!! Pick all the apply
    8·1 answer
  • The velocity of the transverse waves produced by an earthquake is 5.09 km/s, while that of the longitudinal waves is 8.5512 km/s
    12·1 answer
  • A rotating turntable (rt=4.50 m) is rotating at a constant rate. At the edge of the turntable is a mass (m = 3.00 kg) on the end
    10·1 answer
  • The hypothetical upper limit to the mass a star can be before it self-destructs due to the massive amount of fusion it would pro
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!