Answer:
40.0⁰
Explanation:
The formula for calculating the magnetic flux is expressed as:
where:
is the magnetic flux
B is the magnetic field
A is the cross sectional area
is the angle that the normal to the plane of the loop make with the direction of the magnetic field.
Given
A = 0.250m²
B = 0.020T
= 3.83 × 10⁻³T· m²
3.83 × 10⁻³ = 0.020*0.250cosθ
3.83 × 10⁻³ = 0.005cosθ
cosθ = 0.00383/0.005
cosθ = 0.766
θ = cos⁻¹0.766
θ = 40.0⁰
<em>Hence the angle normal to the plane of the loop make with the direction of the magnetic field is 40.0⁰</em>
<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>
Answer:
- Fx = -9.15 N
- Fy = 1.72 N
- F∠γ ≈ 9.31∠-10.6°
Explanation:
You apparently want the sum of forces ...
F = 8.80∠-56° +7.00∠52.8°
Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...
f∠α = (-f·cos(α), -f·sin(α))
This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.
= -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))
≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)
≈ (-9.15309, 1.71982)
The resultant component forces are ...
Then the magnitude and direction of the resultant are
F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)
F∠γ ≈ 9.31∠-10.6°