Answer:
Most substituted alkene is produced as a major product
Explanation:
- Dehydration of 3-methyl-2-butanol proceeds through E1 mechanism to form alkenes.
- Most substituted alkene is produced as major product because of presence of highest number of hyperconjugative hydrogen atoms corresponding to the produced double bond (Saytzeff product).
- Here, a H-shift also occurs in one of the intermediate step during dehydration to produce more stable tertiary carbocation.
- Reaction mechanism has been shown below.
Hey there!
Volume in mL :
1.68 L * 1000 => 1680 mL
Density = 0.921 g/mL
Therefore:
Mass = density * Volume
Mass = 0.921 * 1680
Mass = 1547.28 g
<u>Ans: Acetic acid = 90.3 mM and Sodium acetate = 160 mM</u>
Given:
Acetic Acid/Sodium Acetate buffer of pH = 5.0
Let HA = acetic acid
A- = sodium acetate
Total concentration [HA] + [A-] = 250 mM ------(1)
pKa(acetic acid) = 4.75
Based on Henderson-Hasselbalch equation
pH = pKa + log[A-]/[HA]
[A-]/[HA] = 10^(pH-pKa) = 10^(5-4.75) = 10^0.25 = 1.77
[A-] = 1.77[HA] -----(2)
From (1) and (2)
[HA] + 1.77[HA] = 250 mM
[HA] = 250/2.77 = 90.25 mM
[A-] = 1.77(90.25) = 159.74 mM
Atoms with the same number of protons, but different numbers of neutrons are isotopes of the same element.