The rule to get the average speed is as follows:
average speed = average distance / average time
We are given that:
distance = 250 m
time = 110 sec
Substitute with the givens in the above equation to get the average speed as follows:
average speed = 250/110 = 25/11 meters/sec
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
Let t=time to reach the ground=8 secs, g= acceleration of gravity. The speed v on reaching the ground is gt=8g=78.4 m/s where g=9.8 m/s/s approx.
Clock wise idk i think you should double check my answer
Power = (force) x (distance / time) = force x speed .
We know the force = 800N.
We have a speed = 30km/hr, but in order to use it in the power formula,
it has to be in meters/second, so we have some work to do first.
(30 km/hr) x (1,000 m/km) x (1 hr / 3,600 sec) = 300 / 36 m/sec .
Power = (force) x (speed) = (800 N) x (300/36 m/s) = <em>6-2/3 kilowatts </em>
Work = (power) x (time) = (6,666-2/3 joule/sec) x (25sec) = <em>166,666-2/3 joules</em>.
The figure for power is slightly weird ... 746 watts = 1 horsepower,
so the truck's engine is only delivering about 8.9 horsepower.
Very fuel-efficient, but I don't think they drive trucks that way.