Hi there!
To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:
Answer:
1 Expandir.
-28=-21x-28+21x
−28=−21x−28+21x
2 Simplifica -21x-28+21x−21x−28+21x a -28−28.
-28=-28
−28=−28
3 Ya que ambos lados son iguales, hay infinitas soluciones.
Soluciones Infinitas
Step-by-step explanation:
Answer:
answer in photo
hope this helps :)
Step-by-step explanation: