What do you mean? because yes the energy is converted into electricity but the question isn't specific
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m
Should be 1.4, I hope this helps you out
A Magnet is an object that produces a Magnetic Field; it can be formed of a permanent magnet or an electromagnet. The word magnet comes from the Greek "magnítis líthos", which means "Magnesian Stone". Magnesia is an area in Greece (Now Manisa, Turkey) where deposits of magnetite have been discovered since antiquity.
Magnets come in many shapes but no matter what their shapes are, each magnet has a North Pole and a South Pole.
A Magnetic Field is said to exist in a region if a (Magnetic) Force can be exerted on a Magnet. Magnetic Field Lines (Flux Lines) are imaginary lines representing the direction and strength of the Magnetic Field. They go from the North Pole to the South Pole outside the Magnet, and go from the South Pole to the North Pole inside the Magnet. The density of the Magnetic Field Lines is higher near the Poles, and the Magnetic Force is stronger there.
Vf = Final velocity.
Vi = initial velocity
a = acceleration.
t = time
Vf = Vi + at
Vf = 0 + (2 m/s^2)(3s)
Vf = 6 m/s south