Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J
Answer:
Explanation:
Waves involve the transport of energy without the transport of matter. In conclusion, a wave can be described as a disturbance that travels through a medium, transporting energy from one location (its source) to another location without transporting matter.
Mass and velocity are the two terms which affect momentum of a bicycle going hill down.
Explanation:
As we know that Momentum describes the motion of an object. It is the combination of the objects mass and velocity.
So, obviously with no doubt mass and velocity are the two terms which affect momentum.
Momentum(p) = Mass(m) * Velocity(v)
The momentum also depends upon the mass and speed of the object.
More the mass of the object more is the momentum.
Depending upon the gravity and bicycle's motion speed momentum varies.
Bicycle moves faster the down hill if it moves with some speed as it has lesser mass the momentum also will be less.
Answer:
0.181
Explanation:
We can convert the 0.5 rps into standard angular velocity unit rad/s knowing that each revolution is 2π:
ω = 0.5 rps = 0.5*2π = 3.14 rad/s
From here we can calculate the centripetal acceleration
Using Newton 2nd law we can calculate the centripetal force that pressing on the rider, as well as the reactive normal force:
Also the friction force and friction acceleration
For the rider to not slide down, friction acceleration must win over gravitational acceleration g = 9.81 m/s2:
Matter is made of single particles called atoms and is any substance that has either mass or volume. Matter can exist in three states, either as a solid, a liquid or a gas. When two or more atoms combine, they form molecules and Atoms are made up of three sub-atomic protons called protons, neutrons and electrons. The protons and neutrons are densely packed together in the nucleus