Answer:The speed if hailstone dependly largely on its size. A hailstone with a diameter of 0.39 inches,falls wit a speed of 20mph while a hailstone with 3.1 inches in diameter falls at a speed of 110mph.
No speed does not depend on the distance that the hailstone falls.
Explanation: There are other factors that affect the speed of the falling hailstone apart from its size.They are:
1. Friction between the air and the hailstone
2. Wind condition( windy or moist air)
3. The rate at which it melts falling.
Answer:
C
Explanation:
Definition of drug: a medicine or other substance which has a physiological effect when ingested or otherwise introduced into the body
Answer:
First law: kinetic energy is used to turn an electric generator
Second law: some thermal energy is lost to the environment as it travels through the system
Explanation:
The first law of thermodynamics is known as the law of conservation of energy. It states that energy can neither be created nor destroyed but can only be transferred or changed from one form to another. When thermal energy is used to generate electricity, the kinetic energy of the steam is used to turn the electric generator (thereby producing electrical energy).
The second law of thermodynamics states that energy transfer or transformation leads to an increase in entropy resulting in the loss of energy. This law also states that as energy is transferred or transformed, some is lost in a form that is unusable. When thermal energy is used to generate electricity, some of the thermal energy is lost to the environment as it travels through the system.
Answer:
wo = 18.75 rev / s
Explanation:
This is an exercise in endowment kinematics, it indicates that the final angular velocity is w_f = 109 rad / s, the time to reach this velocity is t = 1.87 s and the deceleration a = 4.7 rad / s²
w_f = w₀ - a t
w₀ = w_f + a t
w₀ = 109 + 4.7 1.87
w₀ = 117.8 rad / s
let's reduce to revolutions / s
w₀ = 117.8 rad / s (1 rev / 2pi rad)
w₀ = 18.75 rev / s
Answer:
T=280.41 °C
Explanation:
Given that
At T= 24°C Resistance =Ro
Lets take at temperature T resistance is 2Ro
We know that resistance R given as
R= Ro(1+αΔT)
R-Ro=Ro αΔT
For copper wire
α(coefficient of Resistance) = 3.9 x 10⁻³ /°C
Given that at temperature T
R= 2Ro
Now by putting the values
R-Ro=Ro αΔT
2Ro-Ro=Ro αΔT
1 = αΔT
1 = 3.9 x 10⁻³ x ΔT
ΔT = 256.41 °C
T- 24 = 256.41 °C
T=280.41 °C
So the final temperature is 280.41 °C.