Answer:
how large a magnetic field would you experience = 8.16 x 10∧-4T
Explanation:
I = 20KA = 20,000A
r = 4.9 m
how large a magnetic field would you experience = u.I/2πr
how large a magnetic field would you experience = (4π x10∧-7) × 20000/2π × 4.9
how large a magnetic field would you experience = 8.16 x 10∧-4T
Answer:
Explanation:
Given
Height of ceiling is
Initial speed of Putty
Speed of Putty just before it strike the ceiling is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement
time taken by putty to reach the ceiling
<span>Answer:
Spherical Distribution
Feedback: Correct
The stars in the halo component have highly-inclined random orbits that orbit the center of our Galaxy. The stars within the halo would therefore make up a spherical distribution of stars surrounding the center of the Galaxy. In comparison, the disk stars move in elliptical orbits, which are nearly circular and are confined to the disk of the Galaxy. Disk stars therefore have very small inclinations and do not move above or below the plane of the Galactic disk.</span>
Answer:
(C) greater than zero but less than 45° above the horizontal
Explanation:
The range of a projectile is given by R = v²sin2θ/g.
For maximum range, sin2θ = 1 ⇒ 2θ = sin⁻¹(1) = 90°
2θ = 90°
θ = 90°/2 = 45°
So the maximum horizontal distance R is in the range 0 < θ < 45°, if θ is the angle above the horizontal.
Answer:
0.03167 m
1.52 m
Explanation:
x = Compression of net
h = Height of jump
g = Acceleration due to gravity = 9.81 m/s²
The potential energy and the kinetic energy of the system is conserved
The spring constant of the net is 20130.76 N
From Hooke's Law
The net would strech 0.03167 m
If h = 35 m
From energy conservation
Solving the above equation we get
The compression of the net is 1.52 m