<u>Answer:</u>
The height of ramp = 124.694 m
<u>Explanation:</u>
Using second equation of motion,

From the question,
u = 31 m/s; s = 156.3 m, a=0
substituting values

t = 
= 5.042 s
Similary, for the case of landing
t = 5.042 s; initial velocity, u =0
acceleration = acceleration due to gravity, g = 9.81 
Substituting in 

h = 124.694 m
So height of ramp = 124.694 m
The answer is C. Final position minus initial position.
Answer:
b.) Length
Explanation:
The length of the string can be changed by removing it from the slotted bracket and placing it back in. You can change the mass by varying the number of washers on the mass hanger. The amplitude can be changed by varying the starting angle of the pendulum (low, medium, and high angle). sorry if wrong
- Mass=1167kg
- Initial velocity=u=10m/s
- Acceleration=a=4m/s^2
- Work done=105J=W
- Final velocity=v=?
- Force=F
- Distance=d
Apply Newton's second law


Now




Now
According to third equation of kinematics






This isn't really detailed, but it gives you an idea:
-"I am a gas particle
-"WOW ITS GETTING REALLY COLD!!!
-"Slowly, I can't move as well, not as fast
-"I'm frozen (LET IT GO, LET IT GOOOOOO)
I hope this helps :)