The digit 3 is in the millions place value, hence it is worth three million, not three thousand.
Therefore, 3,000,146 should be read as three million, one hundred and forty-six, and NOT three thousand, one hundred and forty-six.
Hope this answer helps you! If it did, please mark it as the brainiest! I would really appreciate it! :)
Answer / Step-by-step explanation:
It should be noted that the question is incomplete due to the fact that the diagram has not been provided. However, the diagram has been complementing the question has been provided below.
To solve the question in the narrative, we recall the equation used in solving for displacement:
Thus, δₙₐ = Σ pL/AE
Where:
P is applied axial force.
E is the young's modulus of elasticity.
A is the area of cross-section.
L is length of the bar
Therefore, -8 (80) ÷ π/4 ( 0.85)² (18) (10³) + 2(150) ÷ π/4 (1.1)² (18) (10³) + 6(100) ÷ π/4 (0.45)² (18) (10³)
Solving further,
we have,
-8 (80) ÷ 0.7853( 0.85)² (18) (10³) + 2(150) ÷ 0.7853(1.1)² (18) (10³) + 6(100) ÷ 0.7853 (0.45)² (18) (10³)
= -640÷ 0.7853( 0.85)² (18) (10³) + 300 ÷ 0.7853(1.1)² (18) (10³) + 600 ÷ 0.7853 (0.45)² (18) (10³)
Solving further, we arrive at 0.111 in answer.
The positive sign indicates that end A moves away from end D.
Answer:
186.3 quarts of punch
Step-by-step explanation:
175+11.3=186.3
it asks how much did she make in total so you would need to add the 2 together to get the total
Well, we can denote L and W for the length and width respectively. Lets say the A is the area, we have: 1. A=(L × W) as well as 2. 2(L+W)=400. We rearrange the second equation to get 3. W=200-L. From this, we can see that 0<L<200. Substitute the third equation into the first to get A=(200L-L²). put this formula into the scientific calculator and you will find a parabola with a maximum. That would be the maximum area of the enclosed area. Alternatively, we can say that L is between 0 and 200 when the area equals 0. (The graph you find will be area against length). As the maximum is generally found halfway, we substitute 100 into the equation and we end up with 10000.
Hope this helps.