Precipitation hope this helped you
Answer:
a)
⇒
⇒
b)
⇒
⇒
Explanation:
A)
Remember that positive number superscripts mean electrons lack and negative numbers mean electrons 'excess' (if we compare it with the neutral element). So, for the case of Fe2+ which is converted to Fe3+, we know that in Fe2+ there is a two electrons lack, while in Fe3+ there is a 3 electrons lack; it means that Fe2+ was converted to Fe3+ but releasing one electron:
⇒
The same analysis is applied to Br2; Br2 is a molecule which is said to have a zero superscript because it is an apolar covalent bond; and it is converted to Br-, which, according to what I wrote above, means that there is a one electron excess. So, Br2 must have received an electron in order to change to Br-; but Br2 can't change to Br- as simple as that because Br2 is a molecule, not an atom; it is a molecule that has two Br atoms, so, Br2 must give two Br- ions as products, but receiving one electron for each one:
⇒
b)
Applying the same, in Mg2+ there is a 2 electrons lack, and in Mg is not electron lack (its superscript is zero), so Mg must have released two electrons in order to change to Mg2+:
⇒
Cr3+ has a 3 electrons lack, and Cr2+ a two electrons one, so, Cr3+ must receive an electron to convert to Cr2+:
⇒
Answer is: pH value of weak is 3.35.
Chemical reaction (dissociation): HA(aq) → H⁺(aq) + A⁻(aq).
c(HA) = 0.0055 M.
α = 8.2% ÷ 100% = 0.082.
[H⁺] = c(HA) · α.
[H⁺] = 0.0055 M · 0.082.
[H⁺] = 0.000451 M.
pH = -log[H⁺].
pH = -log(0.000451 M).
pH = 3.35.
pH (potential of
hydrogen) is a numeric scale used to specify the acidity or basicity <span>an aqueous solution.</span>
Answer:
A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.
Explanation: