If one or more nucleotide pairs are deleted from a DNA strand, this is known as a frameshift mutation
<h3>
Define Frameshift Mutation</h3>
Insertions or deletions in the genome that are not multiples of three nucleotides are referred to as frameshift mutations. They are a particular class of insertion-deletion (indel) alterations that are present in polypeptides' coding sequences. Here, there are no multiples of three in the number of nucleotides that are added to or subtracted from the coding sequence. They may result from really basic alterations like the insertion or deletion of a single nucleotide.
<h3>
Frameshift mutations' effects</h3>
One of the most harmful modifications to a protein's coding sequence is a frameshift mutation. They are quite prone to produce non-functional proteins that frequently interfere with a cell's metabolic processes and result in significant alterations to polypeptide length and chemical makeup. Frameshift mutations can cause the mRNA to stop translating too soon and create an extended polypeptide.
Learn more about Frameshift mutations here:-
brainly.com/question/12732356
#SPJ4
C electron. Electrons have a negative charge!
Answer: 460.624
Explanation:
1. Multiply the numbers
(24.5260 x 2.56) + 397.84
= (62.784) + 397.84
2. Add the numbers
(62.784) + 397.84
= 460.624
Answer:
the answer is B.
Explanation:
The pressure increases... plus i had this same question
pls give me brainliest
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg