Answer:
2
Step-by-step explanation:
the coefficient above is 2
pretty sure itd take 4 hours bc 4/20=5 hours so if its 5 ppl 5/20=4.
hope it helps!
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
<span>The problem says that Donovan is using similar rectangles, so you can calculate the length of the second rectangle, by using the similarity concept.
We have that the first rectangle </span>is 2 inches wide and 6 inches long, and the second rectangle must has<span> 5 inches wide. Then:
2/5=6/L (L: </span>the length of the second rectangle).
<span> 2L=6x5
2L=30
L=30/2
L=15 inches
H</span><span>ow long must the second rectangle be?
</span><span>
The answer is: The second rectangle must be 15 inches long.
</span>