Answer: a)
: Decomposition
b)
: double displacement
c)
: Synthesis (Combination)
d)
: redox
Explanation:
Decomposition is a type of chemical reaction in which one reactant gives two or more than two products.

A double displacement reaction is one in which exchange of ions take place.

Synthesis reaction is a chemical reaction in which two reactants are combining to form one product.

Redox reaction is a type of chemical reaction in which oxidation and reduction takes place in one single reaction. The oxidation number of one element increases and the oxidation number of other element decreases.

diatomic hydrogen is written as H2 (2.02 grams H2) <------- if each hydrogen atom is 1.01 grams, then two hydrogen atoms are 2.02 grams 2.0 moles H2 X 2.02 grams H2 ------------- (divide to cancel moles) = 4.04 grams/mole H2 ÷ one mole = 4.04 grams H2
Answer:
c
Explanation:
c first quarter waxing half moon
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
Answer: the essential parts of a flower
Explanation:
are engaged with seed creation. In the event that a blossom contains both useful stamens and pistils, it is known as an ideal bloom, regardless of whether it doesn't contain petals and sepals. On the off chance that either stamens or pistils are deficient with regards to, the blossom is called imperfect.