Van der waals force
Explanation:
The intermoleclular forces are attraction between molecules. Interatomic forces are attraction between atoms in a compound.
In most hydrocarbons the weak Van der waals attraction are known.
- These forces are weak attraction joining non-polar and polar molecules together.
- These forces can also be found in layers of graphite.
- They are of two types;
London dispersion forces are attraction that exists between non-polar molecules and the noble gas.
Dipole - Dipole attractions are forces of attraction existing in polar molecules.
In hydrocarbons, we have non-polar molecules and intermolecular attraction is london dispersion forces.
learn more:
Intermolecular forces brainly.com/question/10107765
#learnwithBrainly
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K
Answer:
Here's what I get
Explanation:
1. Names
I. CH₃-CH₂-COOH = 49. propanoic acid
II. CH₃-CH₂-OH = 46. ethanol
III. CH₃-COO-CH₂-CH₂-CH₃ = 47. propyl ethanoate
IV. H-O-CH₂-CH₂-CH₃ = 48. propan-1-ol
V. H-COO-CH₃ = 51. methyl methanoate
VI. CH₃-COOH = 50. ethanoic acid
2. Precursors
52. methyl propionate ⇒ methanol + propanoic acid
53. ethyl methanoate ⇒ ethanol + methanoic acid
P=0.0902 g/l
v=22.4 l/mol (stp)
M=vp
M=22.4 l/mol * 0.0902 g/l=2.020 g/mol
M=2.020 g/mol
Answer:
The second choice, or flammability.
Explanation:
The flammability of something is how easy it is for it to burn or ignite.