Okay
40ml-35ml=5ml
5ml is the volume of the rock
1ml=1cm3
hence the volume of the rock is 5cm3
a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :

Number 9 adding oil lubricates the chain making it easier to pedal. Also the oil prevents rusting
Answer:
3 Pb(NO3)2 + Al2(SO4)3 = 2 Al(NO3)3 + 3 PbSO4
Explanation:
I think your equation is incorrect? This is balanced and the sum of coefficients is 9.
The reducing agent can approach the carbonyl face of camphor by forming a one carbon bridge (known as an exo attack) or a two carbon bridge (termed endo).
The two resultant stereoisomers are known as isoborneol and borneol (from exo attack) (from endo attack). Gas chromatography (GC) analysis may be used to calculate the ratio of each isomeric alcohol in the mixture. Unfortunately, IR analysis does not permit this.
The stereochemistry of the reaction is regulated in stiff cyclic compounds like camphor and norcamphor by protecting one side of the carbonyl group from the reagent's assault. The hydrogen atom is added to the endo side, creating the exo alcohol isoborneol, while the methyl groups on the one-carbon bridge of camphor screen the approach of the hydride from the "top" or exo side of the two-carbon bridge. You will be asked to guess the main isomeric alcohol created by the norcamphor hydride reduction later in the lab report.
To view more about rational reaction, refer to:
brainly.com/question/20308523
#SPJ4