We know that Weighted atomic mass of Element is Calculated based upon their existence of isotopes and the Relative abundance of these isotopes.
Given that the Element X is Composed of :
Isotope Relative abundance Atomic Mass
⁵⁵X 70% 55
⁵⁶X 20% 56
⁵⁷X 10% 57
Weighted Atomic Mass of Element X :
= (0.70)(55) + (0.20)(56) + (0.10)(57)
= 38.50 + 11.2 + 5.70
= 55.4
So, the Weighted Atomic Mass of Element X is 55.4
Answer:
54g of water
Explanation:
Based on the reaction, 1 mole of methane produce 2 moles of water.
To solve this question we must find the molar mass of methane in order to find the moles of methane added. With the moles of methane and the chemical equation we can find the moles of water produced and its mass:
<em>Molar mass CH₄:</em>
1C = 12g/mol*1
4H = 1g/mol*4
12g/mol + 4g/mol = 16g/mol
<em>Moles methane: </em>
24g CH₄ * (1mol / 16g) = 1.5 moles methane
<em>Moles water:</em>
1.5moles CH₄ * (2mol H₂O / 1mol CH₄) = 3.0moles H₂O
<em>Molar mass water:</em>
2H = 1g/mol*2
1O = 16g/mol*1
2g/mol + 16g/mol = 18g/mol
<em>Mass water:</em>
3.0moles H₂O * (18g / mol) =
<h3>54g of water</h3>
Answer:
You can boil or evaporate the water and the salt will be left behind as a solid. If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid.
Explanation:
Answer:
Molality is 0.25 m
Explanation:
Molality → Moles of solute / kg of solvent
We need the moles of solute → 0.124 moles
22.4 g . 1 mol / 180 g = 0.124 moles
We need the mass of solvent in kg. We determine the mass of solvent with density.
Density = Mass / Volume
Mass = Density . volume → 1 g/mL . 500 mL = 500 g
If we convert the mass in g to kg → 500 g . 1kg / 1000 g = 0.5 kg
In conclussion, molality → 0.124 mol / 0.5 kg = 0.25 m
Answer is only B.
<span>it becomes more stable</span>