In a bronsted lowry proton transfer reaction, the
hydroxide functions as a/an <u>proton acceptor.</u>
Bases are the opposite of acids. Bases are basic since they
take or accept protons. For example, a Hydroxide ion can accept a proton to
form water.
Answer:
1. D 2. C 3. B
Explanation:
1. The product is always what is being yielded from the equation, or what is created. Since both 4H2O and 3CO2 are created from the reactants, they are both products of the reaction.
2. The Law of Conservation of Matter states that matter cannot be created, nor destroyed. Therefore, C is not true because new atoms cannot be created in a reaction.
3. The second formula is balanced, but the first is not
hey there!:
A) Knowing theatre the protease is showing the highest activity at pH 4-6, implies that the amino acid that amino acid that it is acting in is an amino acid with a basic side chain. Therefore, the residues can be any one of the three basic amino acids being histidine, arginine or lysine , having basic side chains at neutral pH.
b) The mechanism of reaction of cysteine proteases is as follows:
First step in the reaction is the deprotonation of a thiol in the cysteine proteases's active site by an adjacent amino acid with a basic side chain, which might be a histidine residue. This is followed by a nucleophilic attack by the anionic sulfur of the deprotonated cysteine on the substrate carbonyl carbon.
Here, a part of the substrate is released with an amine terminus, restoring the His into a deprotonated form, thus forming a thioester intermediate, forming a link between the carboxy-terminal of the substrate and cysteine, resulting in thiol formation. Thus the name thiol proteases. The thioester bond is then hydrolyzed into a carboxylic acid moiety while again forming the free enzyme.
C) cysteine proteases have a pka of 8-9 but when they are deprotonated by a His residue, their pka would come down to 6-8, which would be their optimal pH for functioning. This is because there is a deprotonation of the thiol group , later restoring the HIS deprotonated form and then formation of a thioester bond. This thioester bond when hydrolysed will a carboxylate moeity , which is responsible for bringing the pH down towards a more acidic side.
d) at the optimal pH , the fraction of deprotonated cysteine and protonated B will be equal which will change with the change in pH.
Hope this helps!
The Answer Should Be Electrons.
Answer:
I can't see any attachment....