For this case we have the following function:

By definition, the average rate of change is given by:

We evaluate the function for the given values:
For x = 7:

For x = 14:

Then, replacing values we have:
Answer:
the average rate of change from x = 7 to x = 14 is:
a. 23.22
Answer:
What is P(A), the probability that the first student is a girl? (3/4)
What is P(A), the probability that the first student is a girl? (3/4)What is P(B), the probability that the second student is a girl? (3/4)
What is P(A), the probability that the first student is a girl? (3/4)What is P(B), the probability that the second student is a girl? (3/4)What is P(A and B), the probability that the first student is a girl and the second student is a girl? (1/2)
The probability that the first student is a girl is (3/4), likewise for the 2nd 3rd and 4th it's still (3/4). The order you pick them doesn't matter.
However, once you're looking at P(A and B) then you're fixing the first position and saying if the first student is a girl what's the probability of the second student being a girl.
Answer:
She is 11.25 years old.
Step-by-step explanation:
I just did 45 divided by 4.
Cos 70 = horizontal distance /
100 horizontal distance = 100 cos 70 = 32.2feet
Answer:

Step-by-step explanation:
<u>Linear Combination Of Vectors
</u>
One vector
is a linear combination of
and
if there are two scalars
such as

In our case, all the vectors are given in
but there are only two possible components for the linear combination. This indicates that only two conditions can be used to determine both scalars, and the other condition must be satisfied once the scalars are found.
We have

We set the equation

Multiplying both scalars by the vectors

Equating each coordinate, we get



Adding the first and the third equations:


Replacing in the first equation



We must test if those values make the second equation become an identity

The second equation complies with the values of
and
, so the solution is
