Answer:The answer to this question comes from experiments done by the scientist Robert Boyle in an effort to improve air pumps. In the 1600's, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of gas at a constant temperature is increased, the volume of the gas decreases. when the pressure of gas is decreased, the volume increases. this relationship between pressure and volume is called Boyle's law.
Explanation: So, at constant temperature, the answer to your answer is: the volume decreases in the same ratio as the ratio of pressure increases.
BUT, in general, there is not a single answer to your question. It depend by the context.
For example, if you put the gas in a rigid steel tank (volume is constant), you can heat the gas, so provoking a pressure increase. But you won't get any change in volume.
Or, if you heat the gas in a partially elastic vessel (as a tire or a soccer ball) you will get both an increase of volume AND an increase of pressure.
FINALLY if you inflate a bubblegum ball, the volume will be increased without any change in pressure and temperature, because you have increased the NUMBER of molecules in the balloon.
There are many other ways to change volume and pressure of a gas that are different from the Boyle experiment.
The true statement is (A) energy is absorbed during the reaction
For the products to have more energy, they must absorb it from the surrounding.
Boiling point is the temperature at which a substance begins to change to a gas. Melting point is the temperature at which a substance begins to turn into a liquid. And freezing point is the temperature at which a substance begins turning into a solid.
Answer:
2Cu + S ~~~> Cu2S Copper (C) reacts with sulfur (S) to form copper sulfide as shown in the equation. A scientist adds 12.7 grams of Cu to 3.2 grams of S to start the reaction.
Explanation:
It is a compound because a compound is two or more different elements chemically combined.