2x+10=0
subtract 10 from both sides
2x=(-10)
divide 2 from both sides
x=-5
Therefore ![\theta = 30^\circ](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2030%5E%5Ccirc)
Step-by-step explanation:
Given,
![4\sqrt{3 } =8 cos \theta](https://tex.z-dn.net/?f=4%5Csqrt%7B3%20%7D%20%3D8%20cos%20%5Ctheta)
![\Leftrightarrow cos \theta =\frac{4\sqrt{3} }{8}](https://tex.z-dn.net/?f=%5CLeftrightarrow%20cos%20%5Ctheta%20%3D%5Cfrac%7B4%5Csqrt%7B3%7D%20%7D%7B8%7D)
![\Leftrightarrow cos \theta =\frac{\sqrt{3} }{2}](https://tex.z-dn.net/?f=%5CLeftrightarrow%20cos%20%5Ctheta%20%3D%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D)
![\Leftrightarrow cos \theta =cos 30^\circ](https://tex.z-dn.net/?f=%5CLeftrightarrow%20cos%20%5Ctheta%20%3Dcos%2030%5E%5Ccirc)
![\Leftrightarrow \theta = 30^\circ](https://tex.z-dn.net/?f=%5CLeftrightarrow%20%20%5Ctheta%20%3D%2030%5E%5Ccirc)
Therefore ![\theta = 30^\circ](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2030%5E%5Ccirc)
Answer:
x = 6
Step-by-step explanation:
10x = 5 x 12 = 60
x = 6
A = 23,000(1 + .03/365)^365(30)
A = 23,000(1.000082192)^10950
The answer is $56,569 or $56,568.92
Hope this helps :)
1.
An expression of the form
![a \frac{b}{c}](https://tex.z-dn.net/?f=a%20%5Cfrac%7Bb%7D%7Bc%7D)
is called a "compound fraction"
Compound fractions can be written as simple fractions by multiplying c to a, and then adding the product to c as follows:
![a \frac{b}{c}= \frac{c.a+b}{c}](https://tex.z-dn.net/?f=a%20%5Cfrac%7Bb%7D%7Bc%7D%3D%20%5Cfrac%7Bc.a%2Bb%7D%7Bc%7D)
for example,
![4\frac{1}{2}](https://tex.z-dn.net/?f=4%5Cfrac%7B1%7D%7B2%7D)
can be written as:
![4\frac{1}{2}= \frac{2.4+1}{2}=\frac{9}{2}](https://tex.z-dn.net/?f=4%5Cfrac%7B1%7D%7B2%7D%3D%20%5Cfrac%7B2.4%2B1%7D%7B2%7D%3D%5Cfrac%7B9%7D%7B2%7D)
2.
when we subtract or add a fraction
![\frac{m}{n}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bm%7D%7Bn%7D%20)
from an integer k,
we first write k as a fraction with denominator n. We can do this as follows:
![k=k. \frac{n}{n}= \frac{kn}{n}](https://tex.z-dn.net/?f=k%3Dk.%20%5Cfrac%7Bn%7D%7Bn%7D%3D%20%5Cfrac%7Bkn%7D%7Bn%7D%20%20)
for example, if we want to subtract
![\frac{9}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B9%7D%7B2%7D%20)
from 8,
we first write 8 as a fraction with denominator 2:
![8=8. \frac{2}{2}= \frac{8.2}{2}= \frac{16}{2}](https://tex.z-dn.net/?f=8%3D8.%20%5Cfrac%7B2%7D%7B2%7D%3D%20%5Cfrac%7B8.2%7D%7B2%7D%3D%20%5Cfrac%7B16%7D%7B2%7D%20%20%20)
3.
Thus,
![8-4 \frac{1}{2}= \frac{16}{2}- \frac{9}{2}= \frac{16-9}{2}= \frac{7}{2}](https://tex.z-dn.net/?f=8-4%20%5Cfrac%7B1%7D%7B2%7D%3D%20%5Cfrac%7B16%7D%7B2%7D-%20%5Cfrac%7B9%7D%7B2%7D%3D%20%5Cfrac%7B16-9%7D%7B2%7D%3D%20%5Cfrac%7B7%7D%7B2%7D%20%20%20%20)
4.
The simple fraction 7/2 is not an option, so we write it as a compound fraction as follows:
![\frac{7}{2}= \frac{6+1}{2}= \frac{6}{2}+ \frac{1}{2}=3+ \frac{1}{2}=3\frac{1}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B7%7D%7B2%7D%3D%20%5Cfrac%7B6%2B1%7D%7B2%7D%3D%20%5Cfrac%7B6%7D%7B2%7D%2B%20%5Cfrac%7B1%7D%7B2%7D%3D3%2B%20%5Cfrac%7B1%7D%7B2%7D%3D3%5Cfrac%7B1%7D%7B2%7D%20%20%20%20)
(So write 7 as the sum of the largest multiple of 2, smaller than 7 + what is left. In our case these numbers are 6 and 1, then proceed as shown)
5. Answer: D