Answer:T
Step by Step explanation
You have not provided the options, therefore, I cannot give an exact answer. However, I can help you with the procedures.
We are given that the ratio between the width and the length of the flag is 10 to 19.
This means that:

Therefore, to get the correct choice, all you have to do is divide the width by the length, if the result is 10/19, then the dimensions given are correct.
Examples:For length = 190 and width = 100,
width / length = 100 / 190 = 10 / 19 .........> correct choice
For length = 1.9 and width = 1,
width / length = 1 / 1.9 = 10 / 19 .......> correct choice
Hope this helps :)
u19=-71.74
Step-by-step explanation:
u5=a+4d=-3.7....(1)
u15=a+14d=-52.3....(2)
-10d=48.6
d=-48.6/-10
d=-4.86
Substitute-4.86 into....(1)
u5=a+4(-4.86)=-3.7
a+(-19.44)=-4.7
a=-3.7-(-19.44)
a=15.74
19term=a+18d=?
=15.74+18(-4.86)
=15.74+(-87.48)
19th term =-71.74
<span>f(x) = x</span>² <span>+ 12x + 6 </span>→ y = x² + 12x + 6<span>
Let us convert the standard form into vertex form.
1) Complete the squares. Isolate x</span>² and x terms.
<span>y - 6 = x</span>² + 12x
<span>
2) Create the perfect square trinomial. Whatever number is added on one side must also be added on the other side.
y - 6 + 36 = x</span>² + 12x + 36<span>
y + 30 = (x + 6)</span>²
<span>y = (x + 6)</span>² - 30 ← Vertex form
<span>
To check:
y = (x + 6) (x + 6) - 30
y = x</span>² + 6x + 6x + 36 - 30
<span>y = x</span>² + 12x + 6<span>
The zero that could be added to the given function is 36, -36</span>
The expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Given an integral
.
We are required to express the integral as a limit of Riemann sums.
An integral basically assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinite data.
A Riemann sum is basically a certain kind of approximation of an integral by a finite sum.
Using Riemann sums, we have :
=
∑f(a+iΔx)Δx ,here Δx=(b-a)/n
=f(x)=
⇒Δx=(5-1)/n=4/n
f(a+iΔx)=f(1+4i/n)
f(1+4i/n)=![[n^{2}(n+4i)]/2n^{3}+(n+4i)^{3}](https://tex.z-dn.net/?f=%5Bn%5E%7B2%7D%28n%2B4i%29%5D%2F2n%5E%7B3%7D%2B%28n%2B4i%29%5E%7B3%7D)
∑f(a+iΔx)Δx=
∑
=4
∑
Hence the expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Learn more about integral at brainly.com/question/27419605
#SPJ4