Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

How is the hydrosphere changing? Human contributions to greenhouse gases in the atmosphere are warming the earth's surface - a process which is projected to increase evaporation of surface water and accelerate the hydrologic cycle. In turn, a warmer atmosphere can hold more water vapor.
3 mass number- proton number
So multiply number of moles x number of atoms/mole = 1.8066 x 10^24 atoms of H2. One mole of any gas at STP has a volume of 22.4 L. So first determine the number of moles of gas you have.
for example do 7

that 's what I think
Answer:
<h2>7.54 atm </h2>
Explanation:
The required pressure can be found by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
From the question we have

We have the final answer as
<h3>7.54 atm </h3>
Hope this helps you