<span><span>D.</span><span>Measurements are taken in a way that is the same every time.- apex
</span></span>
D. velocity includes rate of change and direction
Given Information:
Resistance of circular loop = R = 0.235 Ω
Radius of circular loop = r = 0.241 m
Number of turns = n = 10
Voltage = V = 13.1 V
Required Information:
Magnetic field = B = ?
Answer:
Magnetic field = 0.00145 T
Explanation:
In a circular loop of wire with n number of turns and radius r and carrying a current I induces a magnetic field B
B = μ₀nI/2r
Where μ₀= 4πx10⁻⁷ is the permeability of free space and current in the loop is given by
I = V/R
I = 13.1/0.235
I = 55.74 A
B = 4πx10⁻⁷*10*55.74/2*0.241
B = 0.00145 T
Therefore, the magnetic field at the center of this circular loop is 0.00145 T
Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer:
All electrons are negative(-) charged