They traveling at -0.37/ms^
Answer: F = 1391 N
Explanation:
The information given to you are:
Mass M = 1300 kg
Acceleration a = 1.07 m/s^2
The magnitude of the force striking the building will be
F = ma
Where
F = force
Substitute mass M and acceleration a into the formula
F = 1300 × 1.07
F = 1391 N
Therefore, the wrecking ball strikes the building with a force of 1391 N
Answer:
Friction is useful in some cases like walking and cycling ..
but it is unwanted in machines as it create unwanted sounds and heat .,due to which we loss energy
Explanation:
mark me as brainliest ❤️
When hard stabilization structures such as groins are used to stabilize a shoreline, the change in the longshore current results <u>deposition of sediment. </u>
On the upcurrent side of the barrier, sediment is deposited as the longshore current slows.
What is Hard stabilization?
- Hard stabilization is the prevention of erosion through the use of artificial barriers.
- Other hard stabilization structures, such as breakwaters and seawalls, are built parallel to the beach to protect the coast from the force of waves.
- Hard stabilization structures, such as groins, are built at right angles to the shore to prevent the movement of sand down the coast and maintain the beach.
- These constructions are made to last for many years, but because they detract from the visual splendor of the beach, they are not always the ideal answer.
- Additionally, they affect the habitats and breeding sites of native shoreline species, interfering with the ecosystem's natural processes.
Learn more about the Hard stabilization with the help of the given link:
brainly.com/question/16022736
#SPJ4
Yes
Explanation:
From the graph, we can deduce that the wavelength changes with the speed of the wave.
This is a simple linear graph. A linear graph has a steady gradient and it shows two variables that increases proportionately.
Using the graph, we can establish that as the wavelength of the wave increases the time taken for one wave to pass through increases.
The speed of a wave is given as:
V = fλ
f is the frequency of the wave i.e the number of waves that passes through a point per unit of time
λ is the wavelength of the wave
The vertical axis on the graph shows the time for 1 wave trip, this is the wave period, T
f =
Therefore;
speed of the wave =
This can be evaluated by solving slope of the graph and finding the inverse.
We can see that as the speed of the wave changes, the wavelength will change.
learn more:
Wavelength brainly.com/question/6352445
#learnwithBrainly