We are given that alcohol is the solute, which leaves whatever is not alcohol as the solvent. 20.0% of the solution’s mass is alcohol, meaning 80.0% of the solutions mass is solvent. We are given its mass as 170 g, so just multiply 0.800*170 g = 136 g.
Answer:
Ionization energy of the metal and electron affinity of the nonmetal
Explanation:
An ionic bond is formed when a metal transfers electrons to a nonmetal.
M· + A ⟶ M⁺ + ·A⁻
The two main factors affecting this process are the
- Ionization energy of the metal
- Electron affinity of the nonmetal
1. Ionization energy
The lower the ionization energy of the metal, the more likely it is able to donate an electron.
2. Electron affinity
The higher the electron affinity of the nonmetal, the more likely it is to accept an electron,
3. Periodic trends
(a) Ionization Energy
Ionization energy increases from bottom to top and from left to right in the Periodic Table.
Thus, the atoms with the lowest ionization energy are in the lower left corner of the Periodic Table.
(b) Electron affinity
Electron affinity increases from bottom to top and from left to right in the Periodic Table.
Thus, the atoms with the highest electron affinity are in the upper right corner of the Periodic Table.
Answer:
(D) (CH3CH2)2NH
Explanation:
In order to decide which base is strongest we need to calculate its PKb
PKb = -log [Kb]
A large Kb value and small PKb value gives the strongest base
Compound Kb PKb
(A) C6H5NH2 - 4 x 10^-10 9.349
(B) NH3 1.76x 10^-5 4.754
(C) CH3NH2 4.4x 10^-4 3.357
(D) (CH3CH2)2NH 8.6x 10^-4 3.066
(E) C5H5N 1.7x10^-9 8.77
Clearly (CH3CH2)2NH is the strongest base.
Answer:
70
Explanation:
20 x 5 vials = 100mg
therefore 5 vials required each day.
Two weeks = 14 days
14 days x 5 vials = 70 vials