1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Len [333]
3 years ago
9

You are an industrial engineer with a shipping company. As part of the package- handling system, a small box with mass 1.60 kg i

s placed against a light spring that is compressed 0.280 m. The spring has force constant 48.0 N/m . The spring and box are released from rest, and the box travels along a horizontal surface for which the coefficient of kinetic friction with the box is μk = 0.300. When the box has traveled 0.280 m and the spring has reached its equilibrium length, the box loses contact with the spring. (a) What is the speed of the box at the instant when it leaves the spring? (b) What is the maximum speed of the box during its motion?
Physics
1 answer:
wlad13 [49]3 years ago
6 0

Answer:

a) V = 0.82m/s

b) Vmax = 0.985 m/s

Explanation:

By conservation of energy we know that:

Eo = Ef    \frac{m*V^{2}}{2}-\frac{K*Xmax^{2}}{2}=-Ff*Xmax

Solving for V we get:

V = 0.82 m/s

To find the maximum speed we will do the same to an intermediate point where the compression is X and the distance for the work donde by frictions is given by (Xmax - X) = (0.28m - X):

\frac{m*Vmax^{2}}{2}+\frac{K*X^{2}}{2}-\frac{K*Xmax^{2}}{2}=-Ff*(Xmax-X)

Then we have to solve for V, derive and equal zero in order to find position X. After solving the derivative we get:

X = 0.1m    Replacing this value into the equation for Vmax:

Vmax = 0.985m/s

You might be interested in
A common carnival ride, called a gravitron, is a large r = 11 m cylinder in which people stand against the outer wall. the cylin
Leya [2.2K]

Answer:

 v = 13.19 m / s

Explanation:

This problem must be solved using Newton's second law, we create a reference system where the x-axis is perpendicular to the cylinder and the Y-axis is vertical

 

X axis

       N = m a

Centripetal acceleration is

       a = v² / r

Y Axis

      fr -W = 0

      fr = W

The force of friction is

     fr = μ N

Let's calculate

    μ (m v² / r) = mg

   μ v² / r = g

   v² = g r / μ

   v = √ (g r /μ)

   v = √ (9.8 11 / 0.62)

   v = 13.19 m / s

7 0
3 years ago
Find the wavelength of light given off by a hydrogen atom when its electron drops from the n = 4 to n = 1 energy level
4vir4ik [10]

Answer: 1.55 x 10 -19J on top

Explanation:

4 0
2 years ago
How can you degauss a magnet temporarily?
EleoNora [17]

Answer:

Demagnetization processes include heating past the Curie point, applying a strong magnetic field, applying alternating current, or hammering the metal.

Explanation:

7 0
3 years ago
A coil with an inductance of 2.3 H and a resistance of 14 Ω is suddenly connected to an ideal battery with ε = 100 V. At 0.13 s
klemol [59]

Given Information:

Resistance = R = 14 Ω

Inductance = L = 2.3 H

voltage = V = 100 V

time = t = 0.13 s

Required Information:

(a) energy is being stored in the magnetic field

(b) thermal energy is appearing in the resistance

(c) energy is being delivered by the battery?

Answer:

(a) energy is being stored in the magnetic field ≈ 219 watts

(b) thermal energy is appearing in the resistance ≈ 267 watts

(c) energy is being delivered by the battery ≈ 481 watts

Explanation:

The energy stored in the inductor is given by

U = \frac{1}{2} Li^{2}

The rate at which the energy is being stored in the inductor is given by

\frac{dU}{dt} = Li\frac{di}{dt} \: \: \: \: eq. 1

The current through the RL circuit is given by

i = \frac{V}{R} (1-e^{-\frac{t}{ \tau} })

Where τ is the the time constant and is given by

\tau = \frac{L}{R}\\ \tau = \frac{2.3}{14}\\ \tau = 0.16

i = \frac{110}{14} (1-e^{-\frac{t}{ 0.16} })\\i = 7.86(1-e^{-6.25t})\\\frac{di}{dt} = 49.125e^{-6.25t}

Therefore, eq. 1 becomes

\frac{dU}{dt} = (2.3)(7.86(1-e^{-6.25t}))(49.125e^{-6.25t})

At t = 0.13 seconds

\frac{dU}{dt} = (2.3) (4.37) (21.8)\\\frac{dU}{dt} = 219.11 \: watts

(b) thermal energy is appearing in the resistance

The thermal energy is given by

P = i^{2}R\\P = (7.86(1-e^{-6.25t}))^{2} \cdot 14\\P = (4.37)^{2}\cdot 14\\P = 267.35 \: watts

(c) energy is being delivered by the battery?

The energy delivered by battery is

P = Vi\\P = 110\cdot 4.37\\P = 481 \: watts

4 0
3 years ago
Click on the ray diagram that shows the proper positioning of an image formed by a concave lens.
Reika [66]

I don't think so

Answer:

h

Explanation:

beautiful answer

6 0
2 years ago
Other questions:
  • Comets travel in orbits around the Sun. Some comets take less than 200 years to orbit the Sun. They are called short-period come
    15·2 answers
  • You drop a rock off of a building. It takes 4.5s to hit the ground. How tall is the building?
    10·1 answer
  • Help me Plaese
    15·1 answer
  • Mary and Jim find an unusual rock in their backyard. Which question about the rock cannot be answered through scientific investi
    15·2 answers
  • 11. Newton's Third Law of Motion relates to action and reaction. Which of the following scenarios accurately names the
    11·1 answer
  • Elizabeth was a brilliant lawyer until she began hearing voices and seeing things that are not there. She also has trouble with
    5·2 answers
  • Select the correct answer.
    14·2 answers
  • A father is homo….zygou dominant for green eyes, the mother is heterozygous. How many of the offspring will have green eyes?
    11·1 answer
  • A car which is traveling at a velocity of 1.6 m/s undergoes an acceleration of 9.2 m/s over a distance of 540 m. How fast is it
    5·1 answer
  • The SI base units have the dimensions of: Group of answer choices mass, weight, time length, density, time mass, length, time we
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!