Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Answer:
PE = 3.92x10^16J
potential energy
Explanation:
PE = m*g*h
mass of water = 1000kg/m³
(4*10^10m³)*1000kg = 4*10^13kg
PE = (4*10^13kg)*(9.81m/s²)*(100m)
PE = 3.92x10^16J
Answer: A: electron shells outside a central nucleus
B: hard, indivisible sphere
C: mostly empty space
Which list of atomic model descriptions represents
the order of historical development from the earliest
to most recent?
Explanation:
3
The amount of heat will be equal to Lm.
Where L is the latent heat of fusion and m is mass of the ice.
Latent heat of ice = 80cal/g.
So the amount of heat required here will be 35× 80cal
= 2,800 cal.
C is the correct answer.
all substances found on the periodic table are elements by definition. anything that is created using elements, such as methane, carbon dioxide, or water, are all compounds.