Answer:
2.3 × 10⁻⁹
Explanation:
Step 1: Write the reaction for the solution of calcium oxalate
CaC₂O₄(s) ⇄ Ca²⁺(aq) + C₂O₄²⁻(aq)
Step 2: Make an ICE chart
We can relate the molar solubility (S) with the solubility product constant (Ksp) through an ICE chart.
CaC₂O₄(s) ⇄ Ca²⁺(aq) + C₂O₄²⁻(aq)
I 0 0
C +S +S
E S S
The solubility product constant is:
Ksp = [Ca²⁺] × [C₂O₄²⁻] = S² = (4.8 × 10⁻⁵)² = 2.3 × 10⁻⁹
Answer:
Explanation:
Significant figure implies number of digits that are to be considered. Some rules are required to be considered when writing a given expression to an expected significant figures.
So that:
1) 0.00004050 is 4 significant figures
2) 54.7000 is 6 significant figures
3) 1,000.09 is 6 significant figures
4) 0.039 is 2 significant figures
Answer:
Disagree with the suggestion based on the hygroscopic nature of anhydrous magnesium sulfate
Explanation:
Magnesium sulfate in the anhydrous form is a drying agent. A drying agent salts of inorganic compounds that has the capability of absorbing water to become hydrated, when placed in the presence of a wet surface or moist air
Anhydrous magnesium sulfate is therefore hygroscopic such that it absorbs water from the atmosphere and becomes hydrated and increases in size as its volume is increased according to the following chemical equation
MgSO₄(s) + 7H₂O(l) → MgSO₄·7H₂O(s)
The molar mass of anhydrous magnesium sulfate = 120.366 g/mol
The molar mass of the heptahydrate = 246.47 g/mol
Therefore, the mass of the magnesium sulfate doubles when it forms the heptahydrate, and the magnesium sulfate grows bigger.
CuCl2 + 2NaNO3 ----> Cu(NO3)2 + 2NaCl
using molar masses:-
Theoretical yields:-
63.54 + 2(35.45) g of CuCl2 produces 2(22.98 + 35.45) g of NaCl
134.44 g .................................................... 116.86 g
31.0 g ....................................................31.0 * 116.86 /134.44=26.95g
So percentage yield is 21.2* 100 / 26.95 = 78.7% to nearest tenth