Kinetics is the topic generally used to explain
18.The octet rule tells us that in every chemical
reactions, elements will either gain or lose electrons to attain the noble gas electron
configuration. This stable<span> electron configuration is known as the octet configuration
since it is composed of 8 valence. Oxygen’s electron configuration is 1s2 2s2
2p4. So when</span> oxygen reacts with
other elements to form compounds, it completes the octet configuration by
taking 2 electrons from the element
it reacts with
19. Actually pure metals are made up not of
metal atoms but rather of closely packed cations (positively charge particles).
These cations are then surrounded by a pack of mobile valence electrons which
drift from one part of the metal<span> to
another. This is called metallic bond.</span>
20. This is the
energy which is needed to break a single bond. When the dissociation energy is
large, this means that the compound is more stable. Since carbon to carbon
bonds have high dissociation energy, therefore they are not very reactive.
21. Network solids are type of solids
in which the atoms are covalently bonded to one another, so they are very
stable. It takes higher temperature to melt them because breaking these
covalent bonds required greater energy. Some examples are:
- Diamond
<span>-Silicon Carbide</span>
Osmosis is the diffusion of water <span>across a semipermeable membrane (usually cell membrane) from a region of low solute concentration to a more concentrated solution so it can reach equilibrium (balance).
D</span>iffusion is <span>a spontaneous movement of particles from an area of high concentration to an area of low concentration.
Both results in particles moving and help balance out the concentrations.
Also, in osmosis, the water molecules are moving. In diffusion, it is the solutes moving.
I hope this helps and explains well.</span>
Answer:
(C) Mass of KCl(s), mass of H20, initial temperature of the water, and final temperature of the solution
Explanation:
molar enthalpy of solution of KCl(s) is heat evolved or absorbed when one mole of KCl is dissolved in water to make pure solution . The heat evolved or absorbed can be calculated by the following relation.
Q = msΔt where m is mass of solution or water , s is specific heat and Δt is change in temperature of water .
So data required is mass of water or solution , initial and final temperature of solution , specific heat of water is known .
Now to know molar heat , we require mass of solute or KCl dissolved to know heat heat absorbed or evolved by dissolution of one mole of solute .
Answer: C
Explanation: i did this before