Answer:
6.79 g of phosphine can be produced
Explanation:
The reaction is this:
3H₂ + 2P → 2PH₃
We have the mass of the two reactants, so let's find out the limiting reactant, so we can work with the equation. Firstly, we convert the mass to moles (mass / molar mass)
6.2 g / 30.97 g/mol = 0.200 moles of P
4g / 2 g/mol = 2 moles of H₂
Ratio is 3:2.
3 moles of hydrogen react with 2 moles of P
Then, 2 moles of H₂ would react with (2 . 2)/ 3 = 1.3 moles of P.
We have only 0.2 moles of P, so clearly the phosphorous is the limiting reactant.
Ratio is 2:2. So 2 moles of P can produce 2 moles of phosphine. Therefore, 0.2 moles of P must produce the same amount of phosphine.
Let's convert the moles to mass ( mol . molar mass)
0.2 mol . 33.97 g/mol = 6.79 g
Answer: -
15.55 M
35.325 molal
Explanation: -
Let the volume of the solution be 1000 mL.
Density of nitric acid = 1.42 g/ mL
Total Mass of nitric acid Solution = Volume of nitric acid x Density of nitric acid
= 1000 mL x 1.42 g/ mL
= 1420 g.
Percentage of HNO₃ = 69%
Amount of HNO₃ = 
= 979.8 g
Molar mass of HNO₃ = 1 x 1 + 14 x 1 + 16 x 3 = 63 g /mol
Number of moles of HNO₃ = 
= 15.55 mol
Molarity is defined as number of moles per 1000 mL
We had taken 1000 mL as volume and found it to contain 15.55 moles.
Molarity of HNO₃ = 15.55 M
Mass of water = Total mass of nitric acid solution - mass of nitric acid
= 1420 - 979.8
= 440.2 g
So we see that 440.2 g of water contains 15.55 moles of HNO₃
Molality is defined as number of moles of HNO₃ present per 1000 g of water.
Molality of HNO₃ = 
= 35.325 molal
Answer:
QP
Explanation:
P has 9 electrons.
Electronic Configuration : 2, 7
Valence electrons : 7
P needs 1 electron to get stable electronic configuration.
Q has 3 electrons.
Electronic Configuration : 2, 1
Valence electrons : 1
P needs to loose 1 electron to get stable electronic configuration.
Q donates 1 electron,
Q -----> Q+ + 1 e-
P gains 1 electron,
P + 1 e- -----> P-
Q+ + P- -----> QP
This is an ionic compound.
0.295 * 203 = 53.885
0.705 * 205 = 144.525
53.885 + 144.525 = 204.41
The relative atomic mass of Thallium is 204.41
If you are asking for the word for this definition it is a <span>attraction by the two nucluei</span>