Answer: Hope this helps
<h3>
Explanation: <u><em>
The fertilized egg zygote divides repeatedly as it moves down the fallopian tube to the uterus. First, the zygote becomes a solid ball of cells. ... Inside the uterus, the blastocyst implants in the wall of the uterus, where it develops into an embryo attached to a placenta and surrounded by fluid-filled membranes.</em></u></h3><h3><u><em /></u></h3>
Answer:
2.0 grams per cubic centimeter
Explanation:
(You can refer to the DMV triangle to help you solve this!)
Density = Mass/Volume
Density = 4.0g/2.0cm3
Density = 2.0g/cm3
Hope this helps!!!
-Unicorns110504
*Please mark brainliest*
The quantum mechanical model is used to describe the energy and most likely location of an electron.
Answer: Option A
<u>Explanation:
</u>
The quantum mechanical model leads to the introduction of quantum numbers representing the energy levels, sub-shells, orbitals as well as spin states of the electrons. So according to the quantum numbers we can perfectly define the position and energy of any electron in an element.
According to Pauli’s principle, any two electron cannot be having same set of quantum numbers. So, using the principle quantum number, azimuthal quantum number, magnetic and spin quantum number, we can define the energy and location of an electron in the atom.
Answer: B
Explanation:
The rate law is the mathematical equation that describes how reactant concentration changes as a function of time. A law such as "Rate = k*[A]*[B]" means that, for each liter-equivalent of the reactant(s) A, there are k liters of reactant B. The law also dictates the molarity (and thus partial pressure) for each component in solution.
The rate at which a radioactive<span> isotope decays is measured in </span>half-life. The termhalf-life<span> is defined as the time it takes for one-</span>half<span> of the atoms of a </span>radioactive material<span> to disintegrate. </span>Half-lives<span> for </span>various radioisotopes<span> can range from a few microseconds to billions of years.
</span>.
back at it again with that answer
.
zane