<h2>Answer:</h2>
The correct answer is option C which is, "empirical evidence that was collected during the experiment".
<h3>Explanation:</h3>
Empirical evidence are the observations and data values collected during the experiment by using the senses.
Like if your are experimenting involving a chemical reaction, the temperate or color changes during the reaction should be counted in the interpretation of the results.
Hence the correct option is C.
Franklin had been waiting for an opportunity like this. He wanted to demonstrate the electrical nature of lightning, and to do so, he needed a thunderstorm.
He had his materials at the ready: a simple kite made with a large silk handkerchief, a hemp string, and a silk string. He also had a house key, a Leyden jar (a device that could store an electrical charge for later use), and a sharp length of wire. His son William assisted him.
Franklin had originally planned to conduct the experiment atop a Philadelphia church spire, according to his contemporary, British scientist Joseph Priestley (who, incidentally, is credited with discovering oxygen), but he changed his plans when he realized he could achieve the same goal by using a kite.
The particle will have an energy of 12U0. A particle travels at an initial velocity from point B to point A, gaining U0 joules of kinetic energy along the way. The constant force at this point is equal to 12F.
<h3>Does 9.8 represent gravity?</h3>
The acceleration which gravity gives to objects falling freely serves as a gauge of its strength. The gravity's acceleration at Earth's surface is approximately 9.8 meters (32 feet) per second every second.
<h3>What is a good illustration of gravity?</h3>
The following are a few instances of the power of gravity: the energy holding the gases inside the sun. the power behind a ball's descent after being thrown into the air. the force that makes an automobile coast down even when the gas is not depressed.
To know more about Gravitational visit:
brainly.com/question/3009841
#SPJ4
Answer:

Explanation:
Each time the work done to raise a given mass is

here we know that


now we have


since it is just 25% of actual energy consumed as we know its efficiency is 25%
so we have total energy consumed in this way


now if it took N number of times so burn the fat of a pizza then


<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />
According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.
Now, in this case we are on Earth, so the gravity value is
Note the objects experience the acceleration of gravity regardless of their mass.
Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely true on Earth, unless the following condition is fulfiled:
If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at
and hit the ground at approximately the same time.