1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zlopas [31]
4 years ago
14

What is the prerequisite for gravity to act?

Physics
1 answer:
MA_775_DIABLO [31]4 years ago
8 0

In order for gravity to act on a piece of mass, there has to be another piece of mass somewhere in the Universe.  This is seldom an insurmountable requirement.

You might be interested in
A 1.1-kg object is suspended from a vertical spring whose spring constant is 120 N/m. (a) Find the amount by which the spring is
andriy [413]

Answer:

e = 0.0898m

v = 2.07m/s

Explanation:

a) According to Hooke's law

F = ke

e is the extension

k is the spring constant

Since F = mg

mg = ke

e = mg/k

Substitute the given value

e = 1.1(9.8)/120

e = 10.78/120

e = 0.0898m

Hence it is stretched by 0.0898m from its unstrained length

2) Total Energy = PE+KE+Elastic potential

Total Energy = mgh +1/2mv²+1/2ke²

Substitute the given value

5.0= 1.1(9.8)(0.2)+1/2(1.1)v²+1/2(120)(0.0898)²

Solve for v

5.0 = 2.156+0.55v²+0.48338

5.0-2.156-0.48338= 0.55v²

2.36 =0.55v²

v² = 2.36/0.55

v² = 4.29

v ,= √4.29

v = 2.07m/s

Hence the required velocity is 9.28m/s

4 0
3 years ago
A ray of laser light travels through air and enters an unknown material. The laser enters the material at an angle of 36 degrees
V125BC [204]

Answer:1.27

Explanation:

Given

incident angle i=36^{\circ}

refracted angle r=27.5^{\circ}

Suppose n_2 is the refractive index of material then using Snell's law we  can write

n_1\sin i=n_2\sin r

where n_1=refractive index of air

1\times \sin (36)=n_2\times \sin (27.5)

n_2=\dfrac{0.5877}{0.4617}

n_2=1.27

3 0
3 years ago
8.
Arisa [49]

Answer:

can you translate that plz

Explanation:

5 0
3 years ago
Read 2 more answers
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
3 years ago
Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud
adoni [48]

Answer:

Explanation:

Attached is the solution

6 0
3 years ago
Other questions:
  • _____ energy powers the water cycle. Geothermal Solar Latent Electric
    7·2 answers
  • What is isostasy dependent on a balance between
    10·2 answers
  • The work done on a box moved 3 meters by a force of 6 newtons is  newton-meters.
    14·1 answer
  • Imagine a Carnot engine has a hot reservoir of 680 K and a cold reservoir of 220 K. What is the efficiency of the engine? 58.3%
    14·2 answers
  • The two blocks of masses M and 2M shown above initially travel at the same speed v but in opposite directions. They collide and
    8·1 answer
  • Help with these questions
    5·1 answer
  • A body is dropped from a height of 30m. What is the velocity of the body after it has covered a distance of 20 m? (Given g= 10 m
    6·2 answers
  • Explain the challenges in developing an accurate rating system for earthquakes. What kinds of variables are there?
    13·1 answer
  • Cuestionario:
    8·1 answer
  • An object that is dropped from a height H falls with a constant acceleration of g. The final
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!