Answer:
time is 3333.33 min or 55.55 hr
Explanation:
given data
reactor operating = 1 MW
negative reactivity = $5
power = 1 miliwatt
to find out
how long does it take
solution
we know here power coefficient that is
power coefficient = 
power coefficient = 1
so time required to reach power is
power = reactivity × time / power coefficient + reactor operating
1 ×
= -5 t / 1 + 1 × 
5t =
- 
t = 199999.99 sec
so time is 3333.33 min or 55.55 hr
If you go to high you’ll run out of oxygen and possibly be blown off due to high winds.
Answer:
10 kg
Explanation:
The question is most likely asking for the mass of the bicycle.
Momentum is the product of an object's mass and velocity. Mathematically:
p = m * v
Where p = momentum
m = mass
v = velocity
Hence, mass is:
m = p / v
From the question:
p = 25 kgm/s
v = 2.5 m/s
Mass is:
m = 25 / 2.5 = 10 kg
The mass of the bicycle is 10 kg.
In case the question requires the Kinetic energy of the bicycle, it can be gotten by using the formula
K. E = ½ * p * v
K. E. = ½ * 25 * 2.5 = 31.25 J
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s
Answer:
speed = 7.9 m/s
Explanation:
speed = total distance / time taken
speed = 300 / 38
speed = 7.89473684 m/s
to the nearest tenth
speed = 7.9 m/s