Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Answer:
24.24 L
Explanation:
Boyle’s law, also called Mariotte’s law, a relation concerning the compression and expansion of a gas at constant temperature.
This empirical relation, formulated by the physicist Robert Boyle in 1662, states that the pressure (p) of a given quantity of gas varies inversely with its volume (v) at constant temperature; i.e., in equation form, pv = k, a constant.
Real gases obey Boyle’s law at sufficiently low pressures, although the product pv generally decreases slightly at higher pressures, where the gas begins to depart from ideal behaviour.
As, PV = k
P₁ V₁ = P₂ V₂
Given P₁ = 101 KPa
V₁ = 6 L
P₂ = 25 kPa
So, V₂ = P₁ V₁ /P₂ = 101 *6/25 = 24.24 L
The balanced reaction is as follows;
BiCl₂ + Na₂SO₄ --> 2NaCl + BiSO₄
this is a double displacement reaction
the oxidation number of Bi is +2 in both BiCl₂ and BiSO₄
oxidation number of Cl is -1 in both BiCl₂ and NaCl
oxidation number of Na is +1 in both Na₂SO₄ and NaCl
oxidation numbers of elements in SO₄²⁻ remains the same in both compounds.Therefore the oxidation state in any of the elements in the reaction doesn't change. Neither of the elements show an increase or decrease in the oxidation numbers .
Answer for this question is no element decreases its oxidation number.
Answer:
Magnetic property
Explanation:
Iron filling is a magnetic compound, unlike the salt crystals. This means they are attracted by magnets.
To separate a mixture of iron filling s and salt crystals, a magnet should be used to remove the iron fillings from the mixture.
Answer:
What happens when it is squeezed is that its volume increases, the pressure of the material increases.
Explanation:
This is due to the fact that the elastic modulus of the sponge is high and withstands broad forces without deforming its structure, since the force is made within the proportional limit of its particles without modifying or permanently deforming them, that is why when stopping doing pressure or force on it its shape returns to being the original, this also happens due to the phenomenon of resilience